Skip to main content

Advertisement

Log in

Comparison of machine learning methods and finite element analysis on the fracture behavior of polymer composites

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In recent years, it became possible to use different methods for the analysis of mechanical systems with the help of computers to learn like humans and by increasing their interaction with the world by observing autonomously. One of these mechanical analyzes is the fracture mechanics in which the behavior of the laminated composites having a crack is examined. In this study, experimental methods, finite element analysis (FEA) and machine learning algorithms (MLA) were used to analyze the fracture behavior of polymer composites in Mode I, Mode I/II and Mode II loading situations. For the experimental study, the fracture behaviors of the laminated composites reinforced with pure glass, pure carbon and glass/carbon hybrid knitted fabrics were tested with the help of Arcan test apparatus. In the finite element method, the linear elastic fracture behavior at the crack tip was analyzed by using the J-integral method. In the field of MLA, there is no single learning algorithm that provides good learning on all real-world problem data. Therefore, algorithm selection is done experimentally so various machine algorithms were used in the study. The analysis result showed that the finite element analysis and machine learning results were in good agreement with experimental measurements. This study is particularly important for the comparison of machine learning techniques with FEA in regression applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jamali, J., Mourad, A.-H.I., Fan, Y., Wood, J.T.: Through-thickness fracture behavior of unidirectional glass fibers/epoxy composites under various in-plane loading using the CTS test. Eng. Fract. Mech. 156, 83–95 (2016). https://doi.org/10.1016/j.engfracmech.2016.01.016

    Article  Google Scholar 

  2. Bin Mohamed Rehan, M.S., Rousseau, J., Fontaine, S., Gong, X.J.: Experimental study of the influence of ply orientation on DCB mode-I delamination behavior by using multidirectional fully isotropic carbon/epoxy laminates. Compos. Struct. 161, 1–7 (2017). https://doi.org/10.1016/j.compstruct.2016.11.036

    Article  Google Scholar 

  3. Srivastava, V.K., Gries, T., Veit, D., Quadflieg, T., Mohr, B., Kolloch, M.: Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Eng. Fract. Mech. 180, 73–86 (2017). https://doi.org/10.1016/j.engfracmech.2017.05.030

    Article  Google Scholar 

  4. Tiber, B., Balcıoğlu, H.E.: Flexural and fracture behavior of natural fiber knitted fabric reinforced composites. Polym. Compos. (2017). https://doi.org/10.1002/pc.24635

    Article  Google Scholar 

  5. Szekrényes, A., Uj, J.: Beam and finite element analysis of quasi-unidirectional composite SLB and ELS specimens. Compos. Sci. Technol. 64, 2393–2406 (2004). https://doi.org/10.1016/j.compscitech.2004.05.002

    Article  Google Scholar 

  6. Davidson, B.D., Bansal, A., Bing, Q., Sun, X.: Geometrically nonlinear determination of energy release rate and mode ratio in single leg bending tests. J. Reinf. Plast. Compos. 28, 1881–1901 (2009). https://doi.org/10.1177/0731684408089235

    Article  Google Scholar 

  7. Arasan, Ş., Aktaş, M., Balcıoğlu, H.E.: Fracture toughness of woven glass and carbon reinforced hybrid and non-hybrid composite plates. Polym. Compos. (2016). https://doi.org/10.1002/pc.23999

    Article  Google Scholar 

  8. Arcan, M., Hashin, Z., Voloshin, A.: A method to produce uniform plane-stress states with applications to fiber-reinforced materials: a specially designed specimen yields material properties under pure shear or uniform plane-stress conditions. Exp. Mech. 18, 141–146 (1978). https://doi.org/10.1007/BF02324146

    Article  Google Scholar 

  9. Hasanpour, R., Choupani, N.: Rock fracture characterization using the modified Arcan test specimen. Int. J. Rock Mech. Min. Sci. 46, 346–354 (2009). https://doi.org/10.1016/j.ijrmms.2008.07.004

    Article  Google Scholar 

  10. Alizadeh, F., Guedes Soares, C.: Experimental and numerical investigation of the fracture toughness of Glass/Vinylester composite laminates. Eur. J. Mech. - A Solids. 73, 204–211 (2019). https://doi.org/10.1016/j.euromechsol.2018.08.003

    Article  Google Scholar 

  11. Gao, L., Ni, F., Braham, A., Luo, H.: Mixed-Mode cracking behavior of cold recycled mixes with emulsion using Arcan configuration. Constr. Build. Mater. 55, 415–422 (2014). https://doi.org/10.1016/j.conbuildmat.2013.12.079

    Article  Google Scholar 

  12. Alfonso, L., Badulescu, C., Carrere, N.: Use of the modified Arcan fixture to study the strength of bonded assemblies for automotive applications. Int. J. Adhes. Adhes. 80, 104–114 (2018). https://doi.org/10.1016/j.ijadhadh.2017.09.014

    Article  Google Scholar 

  13. Xavier, J., Morais, J., Pereira, F.: Non-linear shear behaviour of bovine cortical bone by coupling the Arcan test with digital image correlation. Opt. Lasers Eng. 110, 462–470 (2018). https://doi.org/10.1016/j.optlaseng.2018.07.004

    Article  Google Scholar 

  14. Valès, B., Marguet, S., Créac’hcadec, R., Sohier, L., Ferrero, J.-F., Navarro, P.: Experimental & numerical study of the tensile/compression-shear Arcan test under dynamic loading. Int. J. Adhes. Adhes. 78, 135–147 (2017). https://doi.org/10.1016/j.ijadhadh.2017.06.010

    Article  Google Scholar 

  15. Song, C., Ooi, E.T., Natarajan, S.: A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics. Eng. Fract. Mech. 187, 45–73 (2018). https://doi.org/10.1016/j.engfracmech.2017.10.016

    Article  Google Scholar 

  16. Choupani, N.: Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens. Mater. Sci. Eng. A. 478, 229–242 (2008). https://doi.org/10.1016/j.msea.2007.05.103

    Article  Google Scholar 

  17. Gruben, G., Fagerholt, E., Hopperstad, O.S., Børvik, T., Langseth, M.: Numerical simulation of ductile fracture in modified Arcan test. Procedia Mater. Sci. 3, 661–666 (2014). https://doi.org/10.1016/j.mspro.2014.06.109

    Article  Google Scholar 

  18. Méité, M., Dubois, F., Pop, O., Absi, J.: Mixed mode fracture properties characterization for wood by digital images correlation and finite element method coupling. Eng. Fract. Mech. 105, 86–100 (2013). https://doi.org/10.1016/j.engfracmech.2013.01.008

    Article  Google Scholar 

  19. Majidi, H.R., Ayatollahi, M.R., Torabi, A.R.: On the use of the extended finite element and incremental methods in brittle fracture assessment of key-hole notched polystyrene specimens under mixed mode I/II loading with negative mode I contributions. Arch. Appl. Mech. 88, 587–612 (2018). https://doi.org/10.1007/s00419-017-1329-7

    Article  Google Scholar 

  20. Mladensky, A., Rizov, V.: Analytical investigation of nonlinear interlaminar fracture in trilayered polymer composite beam under mode II crack loading conditions using the J -integral approach. Arch. Appl. Mech. 83, 1637–1658 (2013). https://doi.org/10.1007/s00419-013-0770-5

    Article  MATH  Google Scholar 

  21. LeBlanc, L.R., LaPlante, G.: Experimental investigation and finite element modeling of mixed-mode delamination in a moisture-exposed carbon/epoxy composite. Compos. Part Appl. Sci. Manuf. 81, 202–213 (2016). https://doi.org/10.1016/j.compositesa.2015.11.017

    Article  Google Scholar 

  22. Hadavinia, H., Ghasemnejad, H.: Effects of mode-I and mode-II interlaminar fracture toughness on the energy absorption of CFRP twill/weave composite box sections. Compos. Struct. 89(2), 303–314 (2009)

    Article  Google Scholar 

  23. Alpaydin, E.: Introduction to Machine Learning. MIT press, Cambridge (2009)

    MATH  Google Scholar 

  24. Radivojac, P, White, M.: Machine Learning Handbook (2019). https://marthawhite.github.io/mlcourse/notes.pdf

  25. Nasiri, S., Khosravani, M.R., Weinberg, K.: Fracture mechanics and mechanical fault detection by artificial intelligence methods: a review. Eng. Fail. Anal. 81, 270–293 (2017). https://doi.org/10.1016/j.engfailanal.2017.07.011

    Article  Google Scholar 

  26. Wang, Hongxun, Zhang, Weifang, Sun, Fuqiang, Zhang, Wei: A comparison study of machine learning based algorithms for fatigue crack growth calculation. Materials 10, 543 (2017). https://doi.org/10.3390/ma10050543

    Article  Google Scholar 

  27. Rovinelli, A., Sangid, M.D., Proudhon, H., Ludwig, W.: Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials. Npj Comput. Mater. 4, 1–10 (2018). https://doi.org/10.1038/s41524-018-0094-7

    Article  Google Scholar 

  28. Balcıoğlu, H.E., Seçkin, A.Ç., Aktaş, M.: Failure load prediction of adhesively bonded pultruded composites using artificial neural network. J. Compos. Mater. 50, 3267–3281 (2016). https://doi.org/10.1177/0021998315617998

    Article  Google Scholar 

  29. Atilla, D., Sencan, C., Goren Kiral, B., Kiral, Z.: Free vibration and buckling analyses of laminated composite plates with cutout. Arch. Appl. Mech. (2020). https://doi.org/10.1007/s00419-020-01730-2

    Article  Google Scholar 

  30. Balcıoğlu, H.E., Yalçın, D.: The determination of fracture characterization of knitted fabric reinforced composites using Arcan test. Fibers Polym. 21, 849–863 (2020). https://doi.org/10.1007/s12221-020-9619-z

    Article  Google Scholar 

  31. Jamali, J., Fan, Y., Wood, J.T.: The mixed-mode fracture behavior of epoxy by the compact tension shear test. Int. J. Adhes. Adhes. 63, 79–86 (2015). https://doi.org/10.1016/j.ijadhadh.2015.08.006

    Article  Google Scholar 

  32. Richard, H.A.: Some theoretıcal and experımental aspects of mıxed mode fractures. In: Fract. 84, Elsevier, 1984: pp. 3337–3344. https://doi.org/10.1016/B978-1-4832-8440-8.50358-6

  33. Ersen Balcioglu, H., Baytan Ozmen, H.: The Fracture Behavior of Pure and Hybrid Intraply Knitted Fabric-Reinforced Polymer Composites. In: Fract. Mech. Appl. Work. Title, IntechOpen, 2019. https://doi.org/10.5772/intechopen.89478

  34. Arash, B., Park, H.S., Rabczuk, T.: Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites. Carbon 96, 1084–1092 (2016). https://doi.org/10.1016/j.carbon.2015.10.058

    Article  Google Scholar 

  35. Shahani, A.R., Abolfathitabar, R., Shooshtar, H.: On the validity of LEFM methods to investigate the fracture behavior of angle-ply laminates. Compos. Part B Eng. 160, 249–253 (2019). https://doi.org/10.1016/j.compositesb.2018.10.013

    Article  Google Scholar 

  36. Matthews, T., Ali, M., Paris, A.J.: Finite element analysis for large displacement J-integral test method for mode I interlaminar fracture in composite materials. Finite Elem. Anal. Des. 83, 43–48 (2014). https://doi.org/10.1016/j.finel.2014.01.006

    Article  Google Scholar 

  37. Gonzáles, G.L.G., González, J.A.O., Castro, J.T.P., Freire, J.L.F.: A J-integral approach using digital image correlation for evaluating stress intensity factors in fatigue cracks with closure effects. Theor. Appl. Fract. Mech. 90, 14–21 (2017). https://doi.org/10.1016/j.tafmec.2017.02.008

    Article  Google Scholar 

  38. Kotsiantis, S.B., Zaharakis, I.D., Pintelas, P.E.: Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26, 159–190 (2006)

    Article  Google Scholar 

  39. Coşkun, A.: Yapay zeka optimizasyon teknikleri: literatür değerlendirmesi. Doğu Anadolu Bölgesi Araştırmaları. 5(2), 142–146 (2007)

    Google Scholar 

  40. Seçkin, A.Ç., Coşkun, A.: Hierarchical fusion of machine learning algorithms in indoor positioning and localization. Appl. Sci. 9, 3665 (2019)

    Article  Google Scholar 

  41. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8, 1341–1390 (1996)

    Article  Google Scholar 

  42. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  43. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992). https://doi.org/10.1080/00031305.1992.10475879

    Article  MathSciNet  Google Scholar 

  45. Masand, B., Linoff, G., Waltz, D.: Classifying news stories using memory based reasoning. In: Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, (1992) pp. 59–65

  46. Seçkin, M., Seçkin, A.Ç., Coşkun, A.: Production fault simulation and forecasting from time series data with machine learning in glove textile industry. J. Eng. Fibers Fabr. 14, 155892501988346 (2019). https://doi.org/10.1177/1558925019883462

    Article  Google Scholar 

  47. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Google Scholar 

  48. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27, 221–234 (1987)

    Article  Google Scholar 

  49. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2, 18–22 (2002)

    Google Scholar 

  50. Akman, M., Genç, Y., Ankarali, H.: Random forests yöntemi ve sağlık alanında bir uygulama. Turk. Klin. J. Biostat. 3, 36–48 (2011)

    Google Scholar 

  51. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  52. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM, (1992) pp. 144–152

  53. Müller, K.-R., Smola, A.J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.: Predicting time series with support vector machines. In: International Conference on Artificial Neural Networks, Springer, (1997) pp. 999–1004

  54. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  55. Gunn, S.R.: Support vector machines for classification and regression. ISIS Tech. Rep. 14, 5–16 (1998)

    Google Scholar 

  56. Willmott, C.J.: Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 63, 1309–1313 (1982)

    Article  Google Scholar 

  57. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L.: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE. 50, 885–900 (2007)

    Article  Google Scholar 

  58. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems (2011) pp. 2546–2554

  59. Coskun, A.: Optimization of a mini-golf game using the genetic algorithm. Elektron. Ir Elektrotechnika. 109, 97–100 (2011)

    Article  Google Scholar 

  60. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Gopinath, K.G.S., Pal, S., Tambe, P.: Prediction of hardness and fracture toughness in liquid-phase-sintered alumina system using Gaussian process regression and minimax probability machine regression. Mater. Today. 5(5), 12223–12232 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ersen Balcıoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balcıoğlu, H.E., Seçkin, A.Ç. Comparison of machine learning methods and finite element analysis on the fracture behavior of polymer composites. Arch Appl Mech 91, 223–239 (2021). https://doi.org/10.1007/s00419-020-01765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01765-5

Keywords

Navigation