Skip to main content

Advertisement

Log in

Convolutional Neural Networks-An Extensive arena of Deep Learning. A Comprehensive Study

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Deep learning is an evolving expanse of machine learning. Machine learning is observing its neoteric span as deep learning is steadily becoming the pioneer in this field. With the emergence of massive and wide-range technologies, recent advances in the area of deep learning have witnessed tremendous growth. Deep learning constitutes a subset of the algorithms of machine learning which aim to detect multiple level dispersion.In wide datasets the deep learning methodologies introduce non-linear transformations and high quality model abstractions. Convolutional neural networks (CNN), a benchmark in deep learning algorithms, have entirely transformed our understanding of the representation of information. CNN has the most reliable outcomes in the resolution of real world problems. In this article we offer a thorough description of CNN implementations in several application areas. On the basis of distinct research questions, we performed a systematic quantitative and performance analysis of the articles selected for this study. The majorly included segments for this study comprises of image classification, face recognition, human activity recognition, natural language processing and traffic management. Along with these, few other areas such as medical science, mechanics, social networking, computer networks and object detection are also addressed marginally. We also contrast the performance of CNN with diverse approaches and experience its effectiveness. This review article puts a limelight on CNN’s modern paradigm, its growing benefits, current implementations and success rate by illuminating on its various research developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source type

Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang and Gerald Penn (2012) Applying Convolutional Neural Networks concepts to hybrid NN-HMM model for speech recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 4277–4280. https://doi.org/10.1109/ICASSP.2012.6288864

  2. Mosavi A, Varkonyi-Koczy AR (2017) Integration of Machine Learning and Optimization for Robot Learning. Recent Global Res Edu Technol Challengss 519:349–355. https://doi.org/10.1007/978-3-319-46490-9_47

    Article  Google Scholar 

  3. Pitts W, Warren S, McCulloch, (1947) How we know universals the perception of auditory and visual forms. Bulletin Mathematical Biophys 9(3):127–147. https://doi.org/10.1007/BF02478291

    Article  Google Scholar 

  4. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  5. Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828. https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  6. Navneet Dalal and Bill Triggs (2005) Histograms of oriented gradients for human detection. IEEE Conf Comput Vis Patt Recogniti (CVPR) 1:886–893. https://doi.org/10.1109/CVPR.2005.177

    Article  Google Scholar 

  7. Yang M-C et al (2013) Robust texture analysis using multi-resolution grayscale invariant features for breast sonographic tumor diagnosis. IEEE Trans Med Imaging 32(12):2262–2273. https://doi.org/10.1109/TMI.2013.2279938

    Article  Google Scholar 

  8. Lowe DG (1999) Object recognition from local scale-invariant features. IEEE Int Conf Comput Vis 2:1150–1157. https://doi.org/10.1109/ICCV.1999.790410

    Article  Google Scholar 

  9. R. Lienhart and J. Maydt (2002) An extended set of Haar-like features for rapid object detection. In: International Conference on Image Processing (ICIP), pp 901–903. https://doi.org/10.1109/ICIP.2002.1038171

  10. Yiu-ming Cheung and Junping Deng(2014) Ultra local binary pattern for image texture analysis. In: IEEE Conference on Security Pattern Analysis, and Cybernetics (SPAC), pp 290–293. https://doi.org/10.1109/SPAC.2014.6982701

  11. Sumaira Muhammad Hayat Khan, Ayyaz Hussain and Imad Fakhri Taha Alshaikhli (2012) Comparative study on content-based image retrieval (CBIR). In: IEEE International Conference on Advanced Computer Science Applications and Technologies (ACSAT), pp 61–66. https://doi.org/10.1109/ACSAT.2012.40

  12. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E (2015) Deep learning applications and challenges in big data analytics. J Big Data 2(1):1–21. https://doi.org/10.1186/s40537-014-0007-7

    Article  Google Scholar 

  13. Bengio Y (2009) Learning deep architectures for AI. Foundat Trends Mach Learn 2:1–127. https://doi.org/10.1561/2200000006

    Article  MATH  Google Scholar 

  14. Guo Y et al (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48. https://doi.org/10.1016/j.neucom.2015.09.116

    Article  Google Scholar 

  15. Marra F, Poggi G, Sansone C (2018) A deep learning approach for Iris Sensor Model Identification. Pattern Recogn Lett 113:46–53. https://doi.org/10.1016/j.patrec.2017.04.010

    Article  Google Scholar 

  16. Geoffrey Hinton et al. (2012) Deep neural networks for acoustic modeling in speech recognition. The shared views of four research groups. IEEE Signal Processing Magazine 29(6):82–97. https://doi.org/10.1109/MSP.2012.2205597

  17. Salakhutdinov R, Tenenbaum JB, Torralba A (2013) “Learning with hierarchical-deep models. IEEE Trans Pattern Anal Mach Intell 35(8):1958–1971. https://doi.org/10.1109/TPAMI.2012.269

    Article  Google Scholar 

  18. Xiangang Li and Xihong Wu(2015) Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp 4520–4524. https://doi.org/10.1109/ICASSP.2015.7178826

  19. Abdel-Hamid O, Mohamed A-R, Jiang H, Deng Li, Penn G, Dong Yu (2014) Convolutional neural networks for speech recognition. IEEE Trans Audio Speech Lang Process 22(10):1533–1545. https://doi.org/10.1109/TASLP.2014.2339736

    Article  Google Scholar 

  20. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160(1):106–154. https://doi.org/10.1113/jphysiol.1962.sp006837

    Article  Google Scholar 

  21. Fukushima K (1980) Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202. https://doi.org/10.1007/BF00344251

    Article  MATH  Google Scholar 

  22. Yann LeCun et al.(1990) Handwritten digit recognition with a backpropagation network. Advances in neural information processing systems: 396–404. https://doi.org/10.5555/2969830.2969879

  23. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. IEEE Proc 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  24. Hecht-Nielsen R (1992) Theory of the back propagation neural network. Neural Networks Percept 2:65–93. https://doi.org/10.1016/B978-0-12-741252-8.50010-8

    Article  Google Scholar 

  25. Yann LeCun and Yoshua Bengio(1998) Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks: 255–258. https://doi.org/10.5555/303568.303704

  26. Nitish Srivastava , Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Rusian Salakhutdinov(2014)Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning research 15(1):1929–1958. https://doi.org/10.5555/2627435.2670313

  27. Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton (2017) ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6):1097–1105. https://doi.org/10.1145/3065386

  28. Karen Simonyan and Andrew Zisserman (2014) Very deep convolutional networks for largescale image recognition, Computer Vision and Pattern Recognition : 1–14. arXiv:1409.1556

  29. Kaiming He, Xiangyu Zhang , Shaoqing Ren and Jian Sun(2016) Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  30. Christian Szegedy,et al.(2015) Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  31. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. Springer European Conference on Computer Vision 9689:818–833. https://doi.org/10.1007/978-3-319-10590-1_53

    Article  Google Scholar 

  32. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  33. Vinod N, Geoffrey E. Hinton (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning(ICML). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.6419&rank=1

  34. Jianchao Y, Kai Y, Yihong G, Thomas H (2009) Linear spatial pyramid matching using sparse coding for image classification, In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1794–1801. https://doi.org/10.1109/CVPR.2009.5206757

  35. Lan Boureau Y, Ponce J and LeCun Y (2010) A theoretical analysis of feature pooling in visual recognition, In: International Conference on Machine Learning (ICML), pp 111–118. https://doi.org/10.5555/3104322.3104338

  36. Marc'Aurelio Ranzato , Fu Jie Huang , Y-Lan Boureau and Yann LeCun (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8. https://doi.org/10.1109/CVPR.2007.383157

  37. Dan Claudiu Ciresan , Ueli Meier , Jonathan Masci , Luca Maria Gambardella and Jurgen Schmidhuber (2011) Flexible, high performance convolutional neural networks for image classification. In: International Joint Conference on Artificial Intelligence (IJCAI), pp 1237–1242. https://doi.org/10.5555/2283516.2283603

  38. Steve Lawrence, C. Lee Giles, Ah Chung Tsoi and Andrew D. Back (1997) Face recognition: a convolutional neural-network approach. IEEE Transactions On Neural Networks 8(1):98–113. https://doi.org/10.1109/72.554195

  39. Pichao Wang et al. (2015) Deep convolutional neural networks for action recognition using depth map sequences. Computer Vision and Pattern Recognition.arXiv:1501.04686

  40. Fan Yang, Wongun Choi and Yuanqing Lin (2016) Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2129–2137. https://doi.org/10.1109/CVPR.2016.234

  41. Patrice Yvon Simard, Dave Steinkraus and John C Platt (2003) Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition 2. https://doi.org/10.5555/938980.939477

  42. Abdel-Hamid O et al (2014) Convolutional neural networks for speech recognition. IEEE/ACM Trans Audio Speech Lang Process 22(10):1533–1545. https://doi.org/10.1109/TASLP.2014.2339736

    Article  Google Scholar 

  43. Min Fu et al (2015) Fast crowd density estimation with convolutional neural networks. Eng Appl Artif Intell 43:81–88. https://doi.org/10.1016/j.engappai.2015.04.006

    Article  Google Scholar 

  44. Xiaower Hu et al (2019) SINet: A Scale-insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Trans Intell Transp Syst 20(3):1010–1019. https://doi.org/10.1109/TITS.2018.2838132

    Article  Google Scholar 

  45. Babaee M, Dinh DT, Rigoll G (2018) A deep convolutional neural network for video sequence background subtraction. Pattern Recogn 76:635–649. https://doi.org/10.1016/j.patcog.2017.09.040

    Article  Google Scholar 

  46. Bai X, Shi B, Zhang C, Cai X, Qi Li (2017) Text/non-text image classification in the wild with convolutional neural networks. Pattern Recogn 66:437–446. https://doi.org/10.1016/j.patcog.2016.12.005

    Article  Google Scholar 

  47. Dyrmann M, Karstoft H, Midtiby HS (2016) Plant species classification using deep convolutional neural network. Bio Syst Eng 151:72–80. https://doi.org/10.1016/j.biosystemseng.2016.08.024

    Article  Google Scholar 

  48. Chena J, Chen J, Zhanga D, Sunb Y, Nanehkarana YA (2020) Using deep transfer learning for image-based plant disease identification. Comput Electron Agricult 173:105393. https://doi.org/10.1016/j.compag.2020.105393

    Article  Google Scholar 

  49. Picona A, Alvarez-Gila A, Seitzc M, d, Amaia Ortiz-Barredob, Jone Echazarraa and Alexander Johannes, (2019) Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Comput Electron Agricult 161:280–290. https://doi.org/10.1016/j.compag.2018.04.002

    Article  Google Scholar 

  50. Xihai zhang, Yue Qiao, Fanfeng Meng, Chengguo Fan and Mingming Zhang (2018) Identification of Maize Leaf Diseases Using Improved Deep Convolutional Neural Networks IEEE Access 6:30370–30376. https://doi.org/10.1109/ACCESS.2018.2844405

  51. Turkoglu M, Hanbay D, Abdul kadir Sengur, (2019) Multi-model LSTM-based convolutional neural networks for detection of apple diseases and pests. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-019-01591-w

    Article  Google Scholar 

  52. Mehmet Metin Ozguven and Kemal Adem (2019) Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Phys A 535:122537. https://doi.org/10.1016/j.physa.2019.122537

    Article  Google Scholar 

  53. Pooya Khorrami, Tom Le Paine, Kevin Brady, Charlie Dagli and Thomas S. Huang (2016) How Deep Neural Networks Can Improve Emotion Recognition On Video Data. In: IEEE International Conference on Image Processing (ICIP), pp: 619–623. https://doi.org/10.1109/ICIP.2016.7532431

  54. Ke X, Shi L, Guo W, Chen D (2019) Multi-Dimensional Traffic Congestion Detection Based on Fusion of Visual Features and Convolutional Neural Network. IEEE Trans Intell Transp Syst 20(6):2157–2170. https://doi.org/10.1109/TITS.2018.2864612

    Article  Google Scholar 

  55. Swietojanski P, Ghoshal A, Renals S (2014) Convolutional Neural Networks for Distant Speech Recognition. IEEE Signal Process Lett 21(9):1120–1124. https://doi.org/10.1109/LSP.2014.2325781

    Article  Google Scholar 

  56. Ma J, Dua K, Zhenga F, Zhangb L, Gongc Z, Suna Z (2018) A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Comput Electron Agricult 154:18–24. https://doi.org/10.1016/j.compag.2018.08.048

    Article  Google Scholar 

  57. Ammarah Farooq, Syed Muhammad Anwar , Muhammad Awais and Saad Rehman (2017) A deep CNN based multi-class classification of alzheimer’s disease using MRI. In: IEEE International Conference on Imaging Systems and Techniques (IST),pp 1–6. https://doi.org/10.1109/IST.2017.8261460

  58. Hansen MF et al (2018) Towards on-farm pig face recognition using convolutional neural networks. Comput Ind 98:145–152. https://doi.org/10.1016/j.compind.2018.02.016

    Article  Google Scholar 

  59. Kaliyar RK, Goswami A, Narang P, Sinha S (2020) FNDNet- A Deep Convolutional Neural Network for Fake News Detection. Cogn Syst Res 61:32–44. https://doi.org/10.1016/j.cogsys.2019.12.005

    Article  Google Scholar 

  60. Yu Wu, Mao H, Yi Z (2018) Audio Classification using Attention-Augmented Convolutional Neural Network. Knowl-Based Syst 161:90–100. https://doi.org/10.1016/j.knosys.2018.07.033

    Article  Google Scholar 

  61. Hua Huang and Shan Lin (2020) WiDet: Wi-Fi based device-free passive person detection with deep convolutional neural networks. Comput Commun 150:357–366. https://doi.org/10.1016/j.comcom.2019.09.016

    Article  Google Scholar 

  62. Lotfollahi M, Siavoshani MJ, Zade RSH, Saberian M (2020) Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Comput 24:1999–2012. https://doi.org/10.1007/s00500-019-04030-2

    Article  Google Scholar 

  63. Jiuxiang Gu et al (2018) Recent advances in convolutional neural networks. Pattern Recogn 77:354–377. https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  64. Lopes AT, Aguiar E, De Souza AF, Oliveira-Santos T (2017) Facial expression recognition with convolutional neural networks: Coping with few data and the training sample order. Pattern Recogn 61:610–628. https://doi.org/10.1016/j.patcog.2016.07.026

    Article  Google Scholar 

  65. Nogueira K, Penatti OAB, dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn 61:539–556. https://doi.org/10.1016/j.patcog.2016.07.001

    Article  Google Scholar 

  66. Egmont-Petersen M, de Ridder D, Handels H (2002) Image processing with neural networks a review. Pattern Recogn 35(10):2279–2301. https://doi.org/10.1016/S0031-3203(01)00178-9

    Article  MATH  Google Scholar 

  67. Zuo Z, Wang G, Shuai B, Zhao L, Yang Q (2015) Exemplar based deep discriminative and shareable feature learning for scene image classification. Pattern Recogn 48(10):3004–3015. https://doi.org/10.1016/j.patcog.2015.02.003

    Article  Google Scholar 

  68. Faithpraise Fina, Philip Birch, Rupert Young, J. Obu, Bassey Faithpraise and Chris Chatwin(2013) Automatic plant pest detection and recognition using k-means clustering algorithm and correspondence filters. International Journal of Advanced Biotechnology and Research 4(2) :189–199. http://sro.sussex.ac.uk/id/eprint/49042/

  69. Yang Lu, Yi S, Zeng N, Liu Y, Zhang Y (2017) Identification of rice diseases using deep convolutional neural networks. Neurocomputing 267:378–384. https://doi.org/10.1016/j.neucom.2017.06.023

    Article  Google Scholar 

  70. Geetharamani G, Arun Pandian J (2019) Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Comput Electr Eng 76:323–338. https://doi.org/10.1016/j.compeleceng.2019.04.011

    Article  Google Scholar 

  71. Jonah Flor V. Oraño, Elmer A. Maravillas and Chris Jordan G. Aliac (2019) Jackfruit Fruit Damage Classification using Convolutional Neural Network. In : IEEE International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp 1–6. https://doi.org/10.1109/HNICEM48295.2019.9073341

  72. Thenmozhi K, Srinivasulu Reddy U (2019) Crop pest classification based on deep convolutional neural network and transfer learning. Comput Electron Agricult 164:104906. https://doi.org/10.1016/j.compag.2019.104906

    Article  Google Scholar 

  73. Yusuke Kawasaki, Hiroyuki Uga, Satoshi Kagiwada, and Hitoshi Iyatomi (2015) Basic Study of Automated Diagnosis of Viral Plant Diseases Using Convolutional Neural Networks. In: Springer International Symposium on Visual Computing (ISVC) Part II, pp 638–645. https://doi.org/10.1007/978-3-319-27863-6_59

  74. Syed Ibrahim Hassan et al. (2019) Underground sewer pipe condition assessment based on convolutional neural networks. Automation in Construction 106:102849. https://doi.org/10.1016/j.autcon.2019.102849

  75. Sebastien Frizzi, Rabeb Kaabi, Moez Bouchouicha, Jean-Marc Ginoux, Eric Moreau and Farhat Fnaiech (2016) Convolutional Neural Network for Video Fire and Smoke Detection.In: IEEE Annual Conference of the Industrial Electronics Society (IECON),pp 877–882. https://doi.org/10.1109/IECON.2016.7793196

  76. Christophe Garcia and Manolis Delakis (2004) Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Trans Pattern Anal Mach Intell 26(11):1408–1423. https://doi.org/10.1109/TPAMI.2004.97

    Article  Google Scholar 

  77. Zhao W, Rama Chellappa P, Phillips J, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv (CSUR) 35(4):399–458. https://doi.org/10.1145/954339.954342

    Article  Google Scholar 

  78. Yi Sun, Ding Liang, Xiaogang Wang and Xiaoou Tang (2015) DeepID3: Face Recognition with Very Deep Neural Networks. Computer Vision and Pattern recognition: 2–6. arXiv:1502.00873

  79. Yaniv Taigman, Ming Yang, Marc Aurelio Ranzato and Lior Wolf (2014) Deepface: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1701–1708. https://doi.org/10.1109/CVPR.2014.220

  80. Musab Coskun, Aysegul Ucar, Ozal Yildrim and Yakup Demir (2017) Face Recognition Based on Convolutional Neural Network. In : IEEE International Conference on Modern Electrical and Energy Systems (MEES), pp: 376–379. https://doi.org/10.1109/MEES.2017.8248937

  81. N. Pattabhi Ramaiah et al.(2015) Illumination Invariant Face Recognition Using Convolutional Neural Networks. In: IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), pp 1–4. https://doi.org/10.1109/SPICES.2015.7091490

  82. Matsugu M, Mori K, Mitari Y, Kaneda Y (2003) Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks 16:555–559. https://doi.org/10.1016/S0893-6080(03)00115-1

    Article  Google Scholar 

  83. Danai Triantafyllidou and Anastasios Tefas (2017) A Fast Deep Convolutional Neural Network for Face Detection in Big Visual Data. In: Advances in Big Data, pp 61–70. https://doi.org/10.1007/978-3-319-47898-2_7

  84. Zhang K, Zhang Z, Li Z, Qiao Yu (2016) Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Process Lett 23(10):1499–1503. https://doi.org/10.1109/LSP.2016.2603342

    Article  Google Scholar 

  85. Aziz Alotaibi and Ausif Mahmood (2017) Deep face liveness detection based on nonlinear diffusion using convolution neural network. Signal Image and video processing (SIViP) 11:713–720. https://doi.org/10.1007/s11760-016-1014-2

    Article  Google Scholar 

  86. Hongshuai, Zhang, Zhiyi Qu, Liping Yuan and GangLi (2017) A Face Recognition Method Based on LBP Feature for CNN. In: IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp 544–547. https://doi.org/10.1109/IAEAC.2017.8054074

  87. Yang Z, Metallinou A, Narayanan S (2014) Analysis and predictive modeling of body language behavior in dyadic interactions from multimodal interlocutor cues. IEEE Trans Multimedia 16:1766–1778. https://doi.org/10.1109/TMM.2014.2328311

    Article  Google Scholar 

  88. Adnan Farooq and Chee Sun Won (2015) A survey of human action recognition approaches that use an RGB-D sensor. IEIE Transactions on Smart Processing and Computing 4:281–290. https://doi.org/10.5573/IEIESPC.2015.4.4.281

    Article  Google Scholar 

  89. Pichao Wang, Wanqing Li, Zhimin Gao, Jing Zhang, Chang Tang and Philip Ogunbona (2015) Deep convolutional neural networks for action recognition using depth map sequences. Computer Vision and Pattern Recognition. arXiv:1501.04686

  90. Ming Zeng, Le T. Nguyen, Bo Yu, Ole J. Mengshoel, Jiang Zhu, Pang Wu and Joy Zhang (2014) Convolutional neural networks for human activity recognition using mobile sensors. In: International Conference on Mobile Computing, Applications and Services (MobiCASE),pp 97–205, https://doi.org/10.4108/icst.mobicase.2014.257786

  91. Zheng Yi, Liu Qi, Chen E, Ge Y, Leon Zha J (2014) Time series classification using multi-channels deep convolutional neural networks. Springer International Conference on Web-Age Information Management 8485:298–310. https://doi.org/10.1007/978-3-319-08010-9_33

    Article  Google Scholar 

  92. Jian Bo Yang, Minh Nhut Nguyen, Phyo San, Xiao Li and Shonali Krishnaswamy (2015) Deep convolutional neural networks on multichannel time series for human activity recognition. In: International joint conference on artificial intelligence (IJCAI), pp 3995–400. https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/view/10710/0

  93. Nunez JC, Cabido R, Pantrigo Montemayor Velez JJASJF (2018) Convolutional Neural Networks and Long Short-Term Memory for skeleton-based human activity and hand gesture recognition. Pattern Recogn 76:80–94. https://doi.org/10.1016/j.patcog.2017.10.033

    Article  Google Scholar 

  94. Charissa Ann Ronao and Sung-Bae Cho (2016) Human activity recognition with Smartphone sensors using deep learning neural networks. Expert Syst Appl 59:235–244. https://doi.org/10.1016/j.eswa.2016.04.032

    Article  Google Scholar 

  95. Artur Jordao , Leonardo Antonio Borges Torres and William Robson Schwartz (2018) Novel approaches to human activity recognition based on accelerometer data Signal. Image and Video Processing:1387–1394. https://doi.org/10.1007/s11760-018-1293-x

  96. Kamel A, Sheng B, Yang Po, Li P, Shen R, Feng DD (2019) Deep Convolutional Neural Networks for Human Action Recognition Using Depth Maps and Postures. IEEE Transactions on Systems, Man, and Cybernetics Systems 49(9):1806–1819. https://doi.org/10.1109/TSMC.2018.2850149

    Article  Google Scholar 

  97. Chan KY, Dillon TS, Singh J, Chang E (2012) Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm. IEEE Trans Intell Transp Syst 13(2):644–654. https://doi.org/10.1109/TITS.2011.2174051

    Article  Google Scholar 

  98. Karlaftis MG, Vlahogianni EI (2011) Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transportation Research Part C: Emerging Technologies 19:387–399. https://doi.org/10.1016/j.trc.2010.10.004

    Article  Google Scholar 

  99. Thou-Ho Chen, Yu-Feng Lin, and Tsong-Yi Chen (2007) Intelligent vehicle counting method based on blob analysis in traffic surveillance. In: IEEE International Conference on Innovative Computing, Information and Control (ICICIC),pp 238–238. https://doi.org/10.1109/ICICIC.2007.362

  100. Xinting Pan ,Yunlong Guo and Aidong Men. (2010) Traffic surveillance system for vehicle flow detection. In: IEEE International Conference on Computer Modeling and Simulation, pp 314–318. https://doi.org/10.1109/ICCMS.2010.75

  101. Vlahogianni EI, Karlaftis MG, Golias JC (2014) Short-term traffic forecasting: where we are and where we’re going. Transportation Research Part C: Emerging Technologies 43:3–19. https://doi.org/10.1016/j.trc.2014.01.005

    Article  Google Scholar 

  102. Davis AC, Yin JH, Velastin SA (1995) Crowd monitoring using image processing”. Electronics & Communication Engineering Journal 7(1):37–47. https://doi.org/10.1049/ecej:19950106

    Article  Google Scholar 

  103. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Networks 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  104. Chen L, Ye F, Ruan Y, Fan H, Chen Q (2018) An algorithm for highway vehicle detection based on convolutional neural network. EURASIP Journal on Image and Video Processing 109:1–7. https://doi.org/10.1186/s13640-018-0350-2

    Article  Google Scholar 

  105. Olivier Barnich and Marc Van (2011) ViBe: A universal background subtraction algorithm for video sequences. IEEE Trans Med Imaging 20(6):1709–1724. https://doi.org/10.1109/TMI.2014.2321024

    Article  MathSciNet  MATH  Google Scholar 

  106. Bruce. D. Lucas and Takeo Kanade(1981) An iterative image registration technique with an application to stereo vision. In: International Joint Conference On Artificial Intelligence. (IJCAI), pp 674–679. http://dl.acm.org/citation.cfm?id=1623264.1623280

  107. Xiying Li, Yongye She, Guigen Yang, Youting Zhao and Donghua Luo (2015) A traffic congestion detection method for surveillance videos based on macro optical flow velocity. In: International Conference of Chinese Transportation Professionals (ICCTP), pp 1569–1578. https://doi.org/10.1061/41186(421)156

  108. Torheim T et al (2014) Classification of dynamic contrast enhanced MR images of cervical cancers using texture analysis and support vector machines. IEEE Trans Med Imaging 33(8):1648–1656. https://doi.org/10.1109/TMI.2014.2321024

    Article  Google Scholar 

  109. Li X, Ye M, Min Fu, Pei Xu, Li T (2015) Domain Adaption of Vehicle Detector based on Convolutional Neural Networks. Int J Control Autom Syst 13(4):1020–1031. https://doi.org/10.1007/s12555-014-0119-z

    Article  Google Scholar 

  110. Nam Vu and Cuong Pham (2018) Traffic Incident Recognition Using Empirical Deep Convolutional Neural Networks Model. In: Springer International Conference on Context-Aware Systems and Applications (ICTCC), pp 90–99. https://doi.org/10.1007/978-3-319-77818-1_9

  111. Samira Pouyanfar et al. (2018) A Survey on Deep Learning: Algorithms, Techniques, and Applications. ACM Computing Surveys 51(5):92(1–36). https://doi.org/10.1145/3234150

  112. Ossama Abdel-Hamid, Li Deng and Dong Yu (2013) Exploring Convolutional Neural Network Structures and Optimization Techniques for Speech Recognition. INTERSPEECH: 3366–3370. https://www.iscaspeech.org/archive/interspeech_2013/i13_3366.html

  113. William Chan and Ian Lane (2016) Deep Convolutional Neural Networks for Acoustic Modeling in Low Resource Languages. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 2056–2060. https://doi.org/10.1109/ICASSP.2015.7178332

  114. Yu Zhang, William Chan and Navdeep Jaitly (2017) Very deep convolutional networks for end-to-end speech recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 4845–4849. https://doi.org/10.1109/ICASSP.2017.7953077

  115. Min Lin, Qiang Chen and Shuicheng Yan (2013) Network in network. Neural and Evolutionary Computing:1–10. arXiv:1312.4400

  116. William Chan, Navdeep Jaitly, Quoc Le and Oriol Vinyals (2016) Listen, Attend and Spell: A Neural Network for Large Vocabulary Conversational Speech Recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1–5. https://doi.org/10.1109/ICASSP.2016.7472621

  117. D. Bahdanau, D. Serdyuk, P. Brakel, N. R. Ke, J. Chorowski, A. Courville, and Y. Bengio (2016) Task Loss Estimation for Sequence Prediction. Machine Learning: 1–13. arxiv:1511.06456

  118. Abdul Malik Badshah, Jamil Ahmad,Nasir Rahim and Sung Wook Baik (2017) Speech Emotion Recognition from Spectrograms with Deep Convolutional Neural Network. In: IEEE International Conference on Platform Technology and Service (PlatCon), pp 1–5. https://doi.org/10.1109/PlatCon.2017.7883728

  119. Zeynep Ozer and Oguz Findik (2018) Noise Robust Sound Event Classification with Convolutional Neural Network. Neurocomputing 272:505–512. https://doi.org/10.1016/j.neucom.2017.07.021

    Article  Google Scholar 

  120. Sainath TN et al (2015) Deep Convolutional Neural Networks for Large-scale Speech Tasks. Neural Networks 64:39–48. https://doi.org/10.1016/j.neunet.2014.08.005

    Article  Google Scholar 

  121. Mark John Francis Gales (1998) Maximum likelihood linear transformations for HMM-based speech recognition. Comput Speech Lang 12(2):75–98. https://doi.org/10.1006/csla.1998.0043

    Article  Google Scholar 

  122. Vinciarelli A (2002) A survey on off-line cursive word recognition. Pattern Recogn 35(7):1433–1446. https://doi.org/10.1016/S0031-3203(01)00129-7

    Article  MATH  Google Scholar 

  123. Keechul Jung, Kwang In Kim and Anil K. Jain (2004) Text information extraction in images and video: a survey. Pattern recognition 37 (5) (2004), pp.977–997. https://doi.org/10.1016/j.patcog.2003.10.012

  124. Eskenazi S, Gomez-Kramer P, Ogier J-M (2017) A comprehensive survey of mostly textual document segmentation algorithms since 2008. Pattern Recogn 64:1–14. https://doi.org/10.1016/j.patcog.2016.10.023

    Article  Google Scholar 

  125. Liu C-L, Nakashima K, Sako H, Fujisawa H (2003) Handwritten digit recognition: benchmarking of state-of-the-art techniques. Pattern Recogn 36(10):2271–2285. https://doi.org/10.1016/S0031-3203(03)00085-2

    Article  MATH  Google Scholar 

  126. Matti Aksela and Jorma Laaksonen (2007) Adaptive combination of adaptive classifiers for handwritten character recognition. Pattern Recogn Lett 28(1):136–143. https://doi.org/10.1016/j.patrec.2006.06.016

    Article  Google Scholar 

  127. Zhu Y, Yao C, Bai X (2016) Scene text detection and recognition: recent advances and future trends. Front Comput Sci 10(1):19–36. https://doi.org/10.1007/s11704-015-4488-0

    Article  Google Scholar 

  128. Yuan Y, Tang S-W, Ching Y, Suen (1996) Automatic document processing: a survey. Pattern Recogn 29(12):1931–1952. https://doi.org/10.1016/S0031-3203(96)00044-1

    Article  Google Scholar 

  129. Khayyam M, LouisaLam and ChingY. Suen (2014) Learning-based word spotting system for Arabic handwritten documents. Pattern Recogn 47(3):1021–1030. https://doi.org/10.1016/j.patcog.2013.08.014

    Article  Google Scholar 

  130. Roy S, Das N, Kundu M, Nasipuri M (2017) Handwritten isolated bangla compound character recognition: a new benchmark using a novel deep learning approach. Pattern Recogn Lett 90:15–21. https://doi.org/10.1016/j.patrec.2017.03.004

    Article  Google Scholar 

  131. Sajjad S. Ahranjany , Farbod Razzazi and Mohammad H. Ghassemian (2010) A Very High Accuracy Handwritten Character Recognition System for Farsi/Arabic Digits Using Convolutional Neural Networks. In: IEEE International Conference on Bio-Inspired Computing: Theories and Applications (BICTA), pp 1585–1592. https://doi.org/10.1109/BICTA.2010.5645265

  132. In-Jung Kim and Xiaohui Xie (2015) Handwritten Hangul recognition using deep convolutional neural networks. Int J Doc Anal Recogn (IJDAR) 18:1–13. https://doi.org/10.1007/s10032-014-0229-4

    Article  Google Scholar 

  133. Syafeeza Ahmad Radzi and Mohamed Khalil-Hani (2011) Character Recognition of License Plate Number Using Convolutional Neural Network. In: Springer International Visual Informatics Conference (IVIC), pp 45–55. https://doi.org/10.1007/978-3-642-25191-7_6

  134. Diederik P. Kingma and Jimmy Lei Ba (2014) Adam: a method for stochastic optimization. Machine Learning: 1–15.arXiv:1412.6980

  135. Jing L, Zhao M, Li P, Xiaoqiang Xu (2017) A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement 111:1–10. https://doi.org/10.1016/j.measurement.2017.07.017

    Article  Google Scholar 

  136. Cerisara C, Kral P, Len L (2018) On the effects of using word2vec representations in neural networks for dialogue act recognition. Comput Speech Lang 47:175–193. https://doi.org/10.1016/j.csl.2017.07.009

    Article  Google Scholar 

  137. Sakkos D, Liu H, Han J, Shao L (2018) End-to-end video background subtraction with 3d convolutional neural networks. Multimed Tools Appl 77:23023–23041. https://doi.org/10.1007/s11042-017-5460-9

    Article  Google Scholar 

  138. Rajendra Acharya U, Shu Lih Oh, Hagiwara Y, Tan JH, Adeli H (2018) Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 100:270–278. https://doi.org/10.1016/j.compbiomed.2017.09.017

    Article  Google Scholar 

  139. Jos van de Wolfshaar, Mahir F. Karaaba and Marco A. Wiering (2016) Deep Convolutional Neural Networks and Support Vector Machines for Gender Recognition. In: IEEE Symposium Series on Computational Intelligence, pp 188–195. https://doi.org/10.1109/SSCI.2015.37

  140. Johannes A et al (2017) Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput Electron Agricult 138:200–209. https://doi.org/10.1016/j.compag.2017.04.013@@

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navdeep Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Sabrol, H. Convolutional Neural Networks-An Extensive arena of Deep Learning. A Comprehensive Study. Arch Computat Methods Eng 28, 4755–4780 (2021). https://doi.org/10.1007/s11831-021-09551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-021-09551-4

Navigation