Skip to main content
Log in

Differences in leaf nutrients and developmental instability in relation to induced resistance to a gall midge

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

The hypersensitive response is an important form of plant-induced defence against galling insects and can imply changes in leaf nutrients, especially nitrogen and carbon, which are important for both gall survivorship and leaf development. We hypothesised that the hypersensitive response also causes leaf stress, which can be measured using leaf fluctuating asymmetry. This method evaluates deviations from leaf symmetry and is used to assess the health of plant populations, given that stressful conditions are positively related to levels of fluctuating asymmetry. In the current study, we investigated whether the hypersensitive response of Bauhinia brevipes (Fabaceae) to gall induction by Schizomyia macrocapillata (Cecidomyiidae) was related to differences in leaf nutrients (nitrogen and organic carbon) and/or levels of fluctuating asymmetry. More than 85 % of gall midges perished due to hypersensitive reactions. Fluctuating asymmetry was positively related to the hypersensitive response, and, consequently, this provides evidence that an induced response against herbivores increases plant stress. The concentration of nitrogen was negatively related to the hypersensitive response, indicating that leaves with increased induced defence tend to have low nitrogen levels, which could affect gall development and survival. Organic carbon was related neither to the hypersensitive response nor to fluctuating asymmetry. Galls are known to affect negatively plant development, and here we show that an induced defence against galls is related to differences in plant nitrogen and developmental stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves-Silva E, Del-Claro K (2016) Herbivory-induced stress: leaf developmental instability is caused by herbivore damage in early stages of leaf development. Ecol Indic 61:359–365. doi:10.1016/j.ecolind.2015.09.036

    Article  Google Scholar 

  • Bagatto G, Paquette LC, Shorthouse JD (1996) Influence of galls of Phanacis taraxaci on carbon partitioning within common dandelion, Taraxacum officinale. Entomol Exp Appl 79:111–117. doi:10.1111/j.1570-7458.1996.tb00815.x

    Article  Google Scholar 

  • Barbosa M, Fernandes GW (2014) Bottom-up effects on gall distribution. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, London, pp 99–113

    Google Scholar 

  • Beasley DAE, Bonisoli-Alquati A, Mousseau TA (2013) The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: a meta-analysis. Ecol Indic 30:218–226. doi:10.1016/j.ecolind.2013.02.024

    Article  Google Scholar 

  • Bentur JS, Kalode MB (1996) Hypersensitive reaction and induced resistance in rice against the Asian rice gall midge Orseolia oryzae. Entomol Exp Appl 78:77–81. doi:10.1111/j.1570-7458.1996.tb00766.x

    Article  Google Scholar 

  • Berenbaum MR (1995) Turnabout is fair play: secondary roles for primary compounds. J Chem Ecol 21:925–940. doi:10.1007/BF02033799

    Article  CAS  PubMed  Google Scholar 

  • Bowdish TI, Stiling P (1998) The influence of salt and nitrogen on herbivore abundance: direct and indirect effects. Oecologia 113:400–405. doi:10.1007/s004420050392

    Article  Google Scholar 

  • Bronner R, Westphal E, Dreger F (1991) Pathogenesis-related proteins in Solanum dulcamara L. resistant to the gall mite Aceria cladophthirus (Nalepa) causes an increased susceptibility to Eriophyes cladophthirus Nal. Physiol Mol Plant Pathol 38:93–104. doi:10.1016/S0885-5765(05)80128-6

    Article  CAS  Google Scholar 

  • Cornelissen TG, Fernandes GW (2001) Defence, growth and nutrient allocation in the tropical shrub Bauhinia brevipes (Leguminosae). Austral Ecol 26:246–253. doi:10.1046/j.1442-9993.2001.01109.x

    Article  Google Scholar 

  • Cornelissen T, Stiling P (2005) Perfect is best: low leaf fluctuating asymmetry reduces herbivory by leaf miners. Oecologia 142:46–56. doi:10.1007/s00442-004-1724-y

    Article  PubMed  Google Scholar 

  • Cornelissen T, Stiling P (2010) Small variations over large scales: fluctuating asymmetry over the range of two oak species. Int J Plant Sci 171:303–309. doi:10.1086/650202

    Article  Google Scholar 

  • Cuevas-Reyes P, Fernandes GW, González-Rodríguez A, Pimenta M (2011) Effects of generalist and specialist parasitic plants (Loranthaceae) on the fluctuating asymmetry patterns of ruprestrian host plants. Basic Appl Ecol 12:449–455. doi:10.1016/j.baae.2011.04.004

    Article  Google Scholar 

  • de Sá CEM, Silveira FAO, Santos JC et al (2009) Anatomical and developmental aspects of leaf galls induced by Schizomyia macrocapillata Maia (Diptera: Cecidomyiidae) on Bauhinia brevipes Vogel (Fabaceae). Rev Bras Bot 32:319–327

    Article  Google Scholar 

  • Detoni ML, Vasconcelos EG, Maia ACRG et al (2011) Protein content and electrophoretic profile of insect galls on susceptible and resistant host plants of Bauhinia brevipes Vogel (Fabaceae). Aust J Bot 59:509–514. doi:10.1071/BT11104

    Article  CAS  Google Scholar 

  • Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on Earth, and where are they? Ann Entomol Soc Am 100:95–99. doi:10.1603/0013-8746(2007)100[95:HMSOGI]2.0.CO;2

    Google Scholar 

  • Fay PA, Hartnett DC (1991) Constraints on growth and allocation patterns of Silphium integrifolium (Asteraceae) caused by a cynipid gall wasp. Oecologia 88:243–250. doi:10.1007/BF00320818

    Article  Google Scholar 

  • Fay PA, Hartnett DC, Knapp AK (1996) Plant tolerance of gall-insect attack and gall-insect performance. Ecology 77:521–534. doi:10.2307/2265627

    Article  Google Scholar 

  • Fernandes GW (1990) Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environ Entomol 19:1173–1182. doi:10.1093/ee/19.5.1173

    Article  Google Scholar 

  • Fernandes GW (1998) Hypersensitivity as a phenotypic basis of plant induced resistance against a galling insect (Diptera: Cecidomyiidae). Environ Entomol 27:260–267. doi:10.1093/ee/27.2.260

    Article  Google Scholar 

  • Fernandes GW, Cornelissen TG, Isaias RMS, Lara TAF (2000) Plants fight gall formation: hypersensitivity. Cienc Cult 52:49–54

    Google Scholar 

  • Fernandes GW, Coelho MS, Lüttge U (2010) Photosynthetic efficiency of Clusia arrudae leaf tissue with and without Cecidomyiidae galls. Braz J Biol 70:723–728. doi:10.1590/S1519-69842010000400004

    Article  CAS  PubMed  Google Scholar 

  • Florentine SK, Raman A, Dhileepan K (2005) Effects of gall induction by Epiblema strenuana on gas exchange, nutrients, and energetics in parthenium hysterophorus. Biocontrol 50:787–801. doi:10.1007/s10526-004-5525-3

    Article  Google Scholar 

  • Furlan C, Salatino A, Domingos M (1999) Leaf contents of nitrogen and phenolic compounds and their bearing with the herbivore damage to Tibouchina pulchra Cogn. (Melastomataceae), under the influence of air pollutants from industries of Cubatão, São Paulo. Braz J Bot 22:317–323. doi:10.1590/S0100-84041999000500014

    Article  Google Scholar 

  • Gange AC, Nice HE (1997) Performance of the thistle gall fly, Urophora cardui, in relation to host plant nitrogen and mycorrhizal colonization. New Phytol 137:335–343. doi:10.1046/j.1469-8137.1997.00813.x

    Article  Google Scholar 

  • Gelman F, Binstock R, Halicz L (2012) Application of the Walkley-Black titration for the organic carbon quantification in organic rich sedimentary rocks. Fuel 96:608–610. doi:10.1016/j.fuel.2011.12.053

    Article  CAS  Google Scholar 

  • Geoffroy P, Legrand M, Fritig B (1990) Isolation and characterization of a proteinaceous inhibitor of microbial proteinases induced during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol Plant-Microbe Interact 3:327–333. doi:10.1080/00021369.1986.10867892

    Article  CAS  PubMed  Google Scholar 

  • Giron D, Huguet E, Stone GN, Body M (2016) Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J Insect Physiol 84:70–89. doi:10.1016/j.jinsphys.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and applications. Symmetry (Basel) 2:466–540. doi:10.3390/sym2020466

    Article  Google Scholar 

  • Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113:492–501. doi:10.1007/s004420050401

    Article  Google Scholar 

  • Hartley SE, Lawton JH (1992) Host-plant manipulation by gall-insects: a test of the nutrition hypothesis. J Anim Ecol. doi:10.2307/5514

    Google Scholar 

  • Heil M (2014) Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol 204:297–306. doi:10.1007/s13744-013-0147-z

    Article  CAS  Google Scholar 

  • Heil M, Baumann B, Andary C et al (2002) Extraction and quantification of condensed tannins as a measure of plant anti-herbivore defence? Revisiting an old problem. Naturwissenschaften 89:519–524

    Article  CAS  PubMed  Google Scholar 

  • Höglund S, Larsson S, Wingsle G (2005) Both hypersensitive and non-hypersensitive responses are associated with resistance in Salix viminalis against the gall midge Dasineura marginemtorquens. J Exp Bot 56:3215–3222. doi:10.1093/jxb/eri318

    Article  PubMed  Google Scholar 

  • Ishino MN, Sibio PR, Rossi MN (2011) Leaf trait variation on Erythroxylum tortuosum (Erythroxylaceae) and its relationship with oviposition preference and stress by a host-specific leaf miner. Austral Ecol 36:203–211

    Article  Google Scholar 

  • Ivanov VP, Ivanov YV, Marchenko SI, Kuznetsov VV (2015) Application of fluctuating asymmetry indexes of silver birch leaves for diagnostics of plant communities under technogenic pollution. Russ J Plant Physiol 62:340–348. doi:10.1134/S102144371l5030085

    Article  CAS  Google Scholar 

  • Karban R, Myers JH (1989) Induced plant responses to herbivory. Annu Rev Ecol Syst 20:331–348. doi:10.1146/annurev.es.20.110189.001555

    Article  Google Scholar 

  • Komac B, Alados CL (2012) Fluctuating asymmetry and Echinospartum horridum fitness components. Ecol Indic 18:252–258. doi:10.1016/j.ecolind.2011.11.028

    Article  Google Scholar 

  • Larson KC (1998) The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Oecologia 115:161–166. doi:10.1007/s004420050503

    Article  Google Scholar 

  • Lempa K, Martel J, Koricheva J et al (2000) Covariation of fluctuating asymmetry, herbivory and chemistry during birch leaf expansion. Oecologia 122:354–360. doi:10.1007/s004420050041

    Article  Google Scholar 

  • Maia VC, Fernandes GW (2005) Two new species of Asphondyliini (Diptera: Cecidomyiidae) associated with Bauhinia brevipes (Fabaceae) in Brazil. Zootaxa 1091:27–40. doi:10.11646/%25x

    Article  Google Scholar 

  • Marini-Filho OJ, Fernandes GW (2012) Stem galls drain nutrients and decrease shoot performance in Diplusodon orbicularis (Lythraceae). Arthropod Plant Interact 6:121–128. doi:10.1007/s11829-011-9147-2

    Article  Google Scholar 

  • McClure MS (1980) Foliar nitrogen: a basis for host suitability for elongate hemlock scale, Fiorinia externa (Homoptera: Diaspididae). Ecology. doi:10.2307/1937157

    Google Scholar 

  • Møller AP (1995) Leaf-mining insects and fluctuating asymmetry in elm Ulmus glabra leaves. J Anim Ecol 64:697–707

    Article  Google Scholar 

  • Møller AP (1998) Developmental instability of plants and radiation from Chernobyl. Oikos 81:444–448

    Article  Google Scholar 

  • Møller AP, De Lope F (1998) Herbivory affects developmental instability of stone oak, Quercus rotundifolia. Oikos 82:246–252

    Article  Google Scholar 

  • Møller AP, Shykoff JA (1999) Morphological developmental stability in plants: patterns and causes. Int J Plant Sci 160:135–146

    Article  Google Scholar 

  • Ollerstam O, Rohfritsch O, Höglund S, Larsson S (2002) A rapid hypersensitive response associated with resistance in the willow Salix viminalis against the gall midge Dasineura marginemtorquens. Entomol Exp Appl 102:153–162. doi:10.1046/j.1570-7458.2002.00935.x

    Article  Google Scholar 

  • Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421. doi:10.1146/annurev.es.17.110186.002135

    Article  Google Scholar 

  • Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J et al (2014) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol. doi:10.1111/1365-2745.12340

    Google Scholar 

  • Radville L, Chaves A, Preisser EL (2011) Variation in plant defense against invasive herbivores: evidence for a hypersensitive response in eastern hemlocks (Tsuga canadensis). J Chem Ecol 37:592–597. doi:10.1007/s10886-011-9962-z

    Article  CAS  PubMed  Google Scholar 

  • Raz S, Graham JH, Hel-Or H et al (2011) Developmental instability of vascular plants in contrasting microclimates at “Evolution Canyon”. Biol J Linn Soc 102:786–797. doi:10.1111/j.1095-8312.2011.01615.x

    Article  Google Scholar 

  • Sáez-Plaza P, Michałowski T, Navas MJ et al (2013a) An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish. Crit Rev Anal Chem 43:178–223. doi:10.1080/10408347.2012.751786

    Article  Google Scholar 

  • Sáez-Plaza P, Navas MJ, Wybraniec S et al (2013b) An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Crit Rev Anal Chem 43:224–272. doi:10.1080/10408347.2012.751787

    Article  Google Scholar 

  • Santos J, Silveira F, Fernandes G (2008) Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evol Ecol 22:123–137. doi:10.1007/s10682-007-9162-z

    Article  Google Scholar 

  • Santos JC, Alves-Silva E, Cornelissen TG, Fernandes GW (2013) The effect of fluctuating asymmetry and leaf nutrients on gall abundance and survivorship. Basic Appl Ecol 14:489–495. doi:10.1016/j.baae.2013.06.005

    Article  Google Scholar 

  • Sibio PR, Rossi MN (2012) Oviposition of a leaf-miner on Erythroxylum tortuosum (Erythroxylaceae) leaves: hierarchical variation of physical leaf traits. Aust J Bot 60:136–142

    Article  Google Scholar 

  • Spirko LS, Rossi AM (2015) Manner of apical meristem destruction affects growth, reproduction, and survival of sea oxeye daisy. J Bot 2015:1–11. doi:10.1155/2015/480891

    Article  Google Scholar 

  • Telhado C, Esteves D, Cornelissen T et al (2010) Insect herbivores of Coccoloba cereifera do not select asymmetric plants. Environ Entomol 39:849–855. doi:10.1603/en09179

    Article  PubMed  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765. doi:10.1023/A:1008638109140

    Article  Google Scholar 

  • White TCR (1984) The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105

    Article  Google Scholar 

  • Yezerinac SM, Lougheed SC, Handford P (1992) Measurement error and morphometric studies: statistical power and observer experience. Syst Biol 41:471–482. doi:10.1093/sysbio/41.4.471

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV, Niemelä P, Haukioja E (1997) Delayed induced resistance and increase in leaf fluctuating asymmetry as responses of Salix borealis to insect herbivory. Oecologia 109:368–373. doi:10.1007/s004420050095

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff of the Estação Ecológica de Pirapitinga (Pirapitinga Ecological Station) for logistical support and hospitality; Embrapa - Milho e Sorgo (Brazilian Corporation of Agricultural Research); and the Departamento de Solos da Universidade Federal de Viçosa for chemical analyses. We are also grateful to two reviewers for their comments. This study had financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Counsel of Technological and Scientific Development (CNPq), the JCS Grant No. 486742/2012-1 and the Foundation of Support Research of the State of Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Carlos Santos.

Additional information

Handling Editor: John F. Tooker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.C., Alves-Silva, E., Cornelissen, T.G. et al. Differences in leaf nutrients and developmental instability in relation to induced resistance to a gall midge. Arthropod-Plant Interactions 11, 163–170 (2017). https://doi.org/10.1007/s11829-016-9472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9472-6

Keywords

Navigation