Skip to main content
Log in

Analysis of regeneration protocols for micropropagation of Pterocarpus santalinus

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

A micropropagation is a powerful tool in the era of the biotechnology revolution. It has a broad range of potentiality as compared to conventional vegetative propagation attracting researchers, industrialists, governmental and nongovernmental organizations at the national and international level. The potential methods of organogenesis and somatic embryogenesis, primarily through callogenesis, allow the production of genotypically identical and pharmacologically conserved disease-free healthy stocks in shorter times. Pterocarpus santalinus, the pride of Andhra Pradesh, has become endangered due to medicinal and commercial overexploitation. The micropropagation of P. santalinus poses many cultural challenges due to limited regeneration potential through callogenesis, organogenesis, and somatic embryogenesis. The lack of proper explant treatment and the effect of plant growth regulators limit the application of published protocols to reproduce the results. The challenge, such as heavy contamination of mature explants with endophytic fungi, forced us to explore the potential of immature tissues for regeneration through induction of somatic embryogenesis. We observed that immature tissues (zygotic embryo, petal, ovary, and anther) are better responsive than mature tissues with the scantiest contamination and phenolic release. The present study analyzed, evaluated, and interpreted the different parameters applied in the micropropagation of P. santalinus. The aim is to solve the discrepancies of existing protocols to present complete insight for future needs in the successful regeneration of the species. The review also compared various treatments to overcome dormancy and promote germination. It also discussed the possibilities of induction of somatic embryogenesis for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhtar N, Kumari N, Pandey S, Ara H, Singh M, Jaiswal U, Jaiswal VS, Jain SM (2000) Somatic embryogenesis in tropical fruits trees. In: Jain SM, Gupta PK, Newton R (eds) Somatic embryogenesis in woody plants, vol. 6. Kluwer Academic Publisher, The Netherland, pp 93–140 (ISBN No.: 0-7923-6419-8)

  • Akhtar N (2013) Somatic Embryogenesis for high-efficiency micropropagation of guava (Psidium guajava L.). In: Maurizio LE, Aylin OS, Mohan J (eds) Protocols for micropropagation of selected economically important horticultural plants. Humana Press, Springer Science+Business Media, LLC, New York, pp 161–177 (ISBN No.: 978-1-62703-073-1)

  • Akhtar N (2018) Somatic Embryogenesis in Guava (Psidium guajava L.). In: Shri Mohan J, Pramod G (eds) Step wise protocols for somatic embryogenesis of important woody plants, 2nd edition, For Sci 85, pp 1–24. https://doi.org/10.1007/978-3-319-79087-9_1

  • Anderson WC (1980) Tissue culture propagation of Red and Black raspberries, Rubus idaeus and R. occidentalus. Act Hort 112:13

    Article  Google Scholar 

  • Annonymous (2012) Botanical survey of india, Identification protocol for red sanders. In: Pharmacognosy of negative listed plant, pp 171–181

  • Anuradha M, Pullaiah T (1999) Propagation studies of red sanders (Pterocarpus santalinus L.f.) in vitro—an endangered taxon of Andhra Pradesh, India. Taiwania 44(3):311–324

    Google Scholar 

  • Arockiasamy S, Ignacimuthu S, Melchias G (2000) Influence of growth regulators and explants type on in-vitro shoot propagation and rooting of red sandalwood (Pterocarpus santalinus L.). Indian J Exp Biol 38:1270–1273

    CAS  PubMed  Google Scholar 

  • Arunakumara KKIU, Walpola BC, Subasinghe S, Yoon M (2011) Pterocarpus santalinus Linn.f. (Rath handun): a review of its botany, uses, phytochemistry and pharmacology. J Korean Soc Appl Biol Chem 54(4):495–500. https://doi.org/10.3839/jksabc.2011.076

    Article  CAS  Google Scholar 

  • Arunkumar AN, Joshi G (2014) Pterocarpus santalinus (Red Sanders) an endemic, endangered tree of India: current status, improvement and the future. J Trop Environ 4(2):1–10

    Google Scholar 

  • Ashrafee TS, Rahman MM, Chakraborty A, Prodhan SH (2014) Antibacterial potentiality of red sandalwood callus against pathogenic isolates of Aeromonas and Pseudomonas. Univ J Plant Sci 2(4):86–91. https://doi.org/10.13189/ujps.2014.020402

    Article  CAS  Google Scholar 

  • Azamthulla M, Balasubramanian R, Kavimani S (2015) A review on Pterocarpus santalinus Linn. World J Pharm Res 4(2):282–292

    Google Scholar 

  • Balaraju K, Agastian P, Agnacimuthu S, Park K (2011) A rapid in vitro propagation of red sanders (Pterocarpus santalinus) using shoot tip explants. Acta Physiol Plant 33(6):2501–2510. https://doi.org/10.1007/s11738-011-0795-8

    Article  CAS  Google Scholar 

  • Barstow M (2018) Pterocarpus santalinus. The IUCN red list of threatened species 2018: e.T32104A67803072. https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T32104A67803072.en

  • Bhagyaraj A (2017) Red Sanders invisible activities in Chittoor district: a case study. Int J Adv Res 5(9):1073–1080. https://doi.org/10.21474/IJAR01/5425

    Article  Google Scholar 

  • Bhagyaraj A, Ramana D (2013) Status of red sanders in business. Indian J Appl Res 3(7):405–407

    Article  Google Scholar 

  • Bhatia S, Sharma K (2015) Modern application of plant biotechnology in pharmaceutical sciences. Sci Direct. https://doi.org/10.1016/B978-0-12-802221-4.00011-X

    Article  Google Scholar 

  • Buah JN, Kawamitsu Y, Sato S, Murayama S (1999) Effects of different types and concentrations of gelling agents on the physical and chemical properties of media and the growth of banana (Musa spp.) in vitro. Plant Prod Sci 2(2):138–145. https://doi.org/10.1626/pps.2.138

    Article  Google Scholar 

  • Bulle S, Reddyvari H, Nallanchakravarthula R, Vaddi DR (2016) Therapeutic potential of Pterocarpus santalinus L.: an update. Pharmacognosy Rev 10(19):43–49. https://doi.org/10.4103/0973-7847.176575

    Article  CAS  Google Scholar 

  • Chaturani GDG, Subasinghe S, Jayatilleka MP (2006) In-vitro establishment, germination and growth performance of red sandalwood (Pterocarpus santalinus L.). Trop Agric Res Ext 9:116–130

    Google Scholar 

  • Chee R, Pool RM (1987) Improved inorganic media constituents for in vitro shoot multiplication of Vitis. Sci Hort 32:85–95. https://doi.org/10.1016/0304-4238(87)90019-7

    Article  Google Scholar 

  • Chen S, Li Y, Xu C, Huang X, Liu T, Peng B, Pan J, Lpn M, Liao Y (2019) Tissue culture of red sandalwood (Pterocarpus santalinus). Agri Biotechnol 8(5):50–54

    Google Scholar 

  • ChengXian X, YanPing M, BiLin P, JianFang P, YuanBei L (2019) Tissue culture and rapid propagation of red sandal wood plantlet. J Southern Agric 50(12):2741–2748. https://doi.org/10.3969/j.issn.2095-1191.2019.12.16

    Article  Google Scholar 

  • Chiancone B, Germanà MA (2013) Micropropagation of Citrus spp. by organogenesis and somatic embryogenesis. In: Lambardi M, Ozudogru EA, Jain SM (eds) Protocols for micropropagation of selected economically-important horticultural plants. Springer Science+Business Media, Berlin, pp 99–118

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326. https://doi.org/10.1038/35030000

    Article  CAS  PubMed  Google Scholar 

  • De Silva MAN, Sreenath WTPSK, Sugathadasa KSS (2005) In vitro callus production of Pterocarpus santalinus L. (Red Sandal) through nodal cuttings, shoot tips and leaf discs. In: Proc. 10th annual Forestry and Environment Symposium, Department of Forestry & Environmental Science, University of Sri Jayewardenepura, Sri Lanka, pp 36

  • Egertsdotter U, Ahmad I, Clapham D (2019) Automation and scale-up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Front Plant Sci 10:109. https://doi.org/10.3389/fpls.2019.00109

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamborg OC, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50:151–158. https://doi.org/10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Giri C, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18:115–135. https://doi.org/10.1007/s00468-003-0287-6

    Article  Google Scholar 

  • Guan Y, Li S-G, Fan X-F, Su Z-H (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938. https://doi.org/10.3389/fpls.2016.00938

    Article  PubMed  PubMed Central  Google Scholar 

  • Halim ME, Misra A (2011) The effects of the aqueous extract of Pterocarpus santalinus heartwood and vitamin E supplementation in streptozotocin-induced diabetic rats. J Med Plants Res 5(3):398–409

    Google Scholar 

  • Hegde M, Singh BG, Krishnakumar N (2012) Non-detriment findings (NDFs) study for Pterocarpus santalinus L.f. (Red Sanders) in India, Institute of forest genetics and tree breeding, Indian council of forestry research and education, Annexure-I. pp 1–28

  • Hoagland DR, Arnon DI (1950) The water culture methods for growing plantlets without soil. California Agric Exp Stat Circ 347:32

    Google Scholar 

  • Isah T (2016) Induction of somatic embryogenesis in woody plants. Acta Physiol Plant 38:1–22. https://doi.org/10.1007/s11738-016-2134-6

    Article  CAS  Google Scholar 

  • Jain SM, Gupta P (eds) (2018) Step wise protocols for somatic embryogenesis of important woody plants, vol. II. Forestry Sciences 85. Second Edition: ISBN: 978-3-319-79086-2. Springer International Publishing AG, Switzerland. https://doi.org/10.1007/978-3-319-79087-9_1

  • Karthikeyan A, Arunprasad T (2019) Growth response of Pterocarpus santalinus seedlings to native microbial symbionts (arbuscular mycorrhizal fungi and Rhizobium aegyptiacum) under nursery conditions. J For Res. https://doi.org/10.1007/s11676-019-01072-y

    Article  Google Scholar 

  • Keshavamurthy M, Srinath BS, Ravishankar VR (2018) Phytochemicalsmediated green synthesis of gold nanoparticles using Pterocarpus santalinus L. (Red Sanders) bark extract and their antimicrobial properties. Part Sci Technol 36(7):785–790. https://doi.org/10.1080/02726351.2017.1302533

    Article  CAS  Google Scholar 

  • Kinjo J, Uemura H, Nohara T, Yamashita M, Marubayashi N, Yoshihira K (1995) Novel yellow pigment from Pterocarpus santalinus: biogenetic hypothesis for santalin analogs. Sci Direct 36(31):5599–5602. https://doi.org/10.1016/0040-4039(95)01071-O

    Article  CAS  Google Scholar 

  • Kumar V, Singh MK, Kumar M, Prakash S, Kumar A, Rao S, Malik S (2015) Effect of different doses of IBA and rooting media on rooting of stem cutting of lemon (Citrus limon Burm) cv. Pant Lemon1. J Plant Develop Sci 7(7):587–591

    CAS  Google Scholar 

  • Lakshmisita G, Raghavaswamy BV (1993) Regeneration of plantlets from leaf disc cultures of rose wood. Plant Sci 88:107–112

    Article  Google Scholar 

  • Lakshmisita G, Sreenatha KS, Sujata S (1992) Plantlet production from shoot tip cultures of red sandalwood (Pterocarpus santalinus L.). Curr Sci 62(7):532–535

    Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micro-propagation of Mountain Laurel (Kalmia latifolia), by use of shoot tip culture. Proc Intern Plant Prop Soc 30:421–427

    Google Scholar 

  • Loyola-Vargas VM, De-la-Pena C, Galaz-Avalos RM, Quiroz-Figueroa FR (2008) Plant tissue culture. In: Walker JM, Rapley R (eds) An intemporal set of tools in protein and cell biomethods handbook. Humana Press, Totowa, pp 875–904

    Google Scholar 

  • Manjunatha BK, Rupani AR, Priyadarshini P, Paul K (2010) Lead finding from Pterocarpus santalinus with hepatoprotective potentials through in-silico methods. Int J Pharm Sci Res 1(7):265–270

    Google Scholar 

  • Merkle SA, Dean JF (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    Article  CAS  Google Scholar 

  • Mordhorst AP, Toonen MA, de Vries SC, Meinke D (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Naidu CV (2001) Improvement of seed germination in red sanders (Pterocarpus santalinus Linn. F.) by plant growth regulators. Indian J Plant Physiol 6(2):205–207

    CAS  Google Scholar 

  • Navada V (2014) Ethnomedicinal value of Pterocarpus santalinus (Linn.f.), a Fabaceae member. Orient Pharm Exp Med 14:313–317. https://doi.org/10.1007/s13596-014-0168-098

    Article  Google Scholar 

  • Neto VB, Otoni WC (2003) Carbon sources and their osmotic potential in plant tissue culture: does it matter? Sci Hort 97:193–202. https://doi.org/10.1016/S0304-4238(02)00231-5

    Article  CAS  Google Scholar 

  • Nic-Can GI, Lopez-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas VM, Rojas-Herrera R, De-la-Pena C (2013) New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS ONE 8(8):e72160. https://doi.org/10.1371/journal.pone.0072160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nic-Can GI, Galaz-Ávalos RM, De-la-Peña C, Alcazar-Magaña A, Wrobel K, Loyola-Vargas VM (2015) Somatic embryogenesis: identified factors that lead to embryogenic repression. A case of species of the same genus. PLoS ONE 10(6):0126414. https://doi.org/10.1371/journal.pone.0126414

    Article  CAS  Google Scholar 

  • Normah M, Rohani E, Mohamed-Hussein Z (2013) Somatic embryogenesis in higher plants. Malays Appl Biol 42:1–12

    Google Scholar 

  • OuYang YF, Wang J, Li Y (2015) Effects of cutting size and exogenous hormone treatment on rooting of shoot cuttings in Norway spruce [Picea abies (L.) Karst.]. New for 46(1):91–105. https://doi.org/10.1007/s11056-014-9449-1

    Article  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2(6):a001537. https://doi.org/10.1101/cshperspect.a001537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozudogru EA, Lambardi M (2016) Cryotechniques for the longterm conservation of embryogenic cultures from woody plants. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer Science+Business Media, Berlin, pp 537–550

    Chapter  Google Scholar 

  • Padmalatha K, Prasad MNV (2007) Seed germination studies in Pterocarpus santalinus L.f.—an endangered and endemic medicinal plant, and relevance to conservation. Seed Sci Biotechnol 2007:32–34

    Google Scholar 

  • Padmalatha K, Prasad MNV (2008) In-vitro plant regeneration of Pterocarpus santalinus L.f. (red sanders)—an endangered medical plant and important timber tree. Tree For Sci Biotechnol 2008:1–6

    Google Scholar 

  • Patel HS, Tandel MB, Prajapati VM, Amlani MH, Prajapati DH (2018) Effect of different pre-sowing treatments on germination of red sanders (Pterocarpus santalinus L.f.) in net house condition. Int J Chem Stud 6(2):876–879

    Google Scholar 

  • Prakash E, Khan PSSV, Rao TJVS, Meru ES (2006) Micropropagation of red sanders (Pterocarpus santalinus L.) using mature nodal explants. J For Res 11:329–335. https://doi.org/10.1007/s10310-006-0230-y

    Article  Google Scholar 

  • Pullaiah T, Anuradha M (2019) Introduction. In: Pullaiah et al. (eds) Red Sanders: Silviculture And Conservation, pp 1–6. https://doi.org/10.1007/978-981-13-7627-6_1

  • Rajeswari V, Paliwal K (2008) In-vitro plant regeneration of red sanders (Pterocarpus santalinus L.f.) from cotyledonary nodes. Indian J Biotechnol 7:541–546

    CAS  Google Scholar 

  • Ramabrahmam V, Sujatha G (2016) Red sanders in Rayalaseema region of Andhra Pradesh: importance to commercial and medicinal value. IOSR J Pharm Biol Sci 11(1):57–60. https://doi.org/10.9790/3008-11145760

    Article  Google Scholar 

  • Rao SP, Raju AJS (2002) Pollination ecology of the red sanders Pterocarpus santalinus (Fabaceae), an endemic and endangered tree species. Curr Sci 83(9):1144–1148

    Google Scholar 

  • Rao AM, Ashok B, Mahesh MU, Subbareddy GV, Sekhar VC, Ramanamurthy GV, Rajulu AV (2019) Antibacterial cotton fabrics with insitu generated silver and copper bimetallic nanoparticles using red sanders powder extract as reducing agent. Int J Polymer Anal Charact 24(4):346–354. https://doi.org/10.1080/1023666X.2019.1598631

    Article  Google Scholar 

  • Reddy O (2018) Pterocarpus santalinus-Rakta Chandan-The red gold-green wealth-an oppurtunity for indian farming community-let’s explore. pp 1–35

  • Renganayaki PR, Vijayalakshmi KP, Tamilarasan C, Nagendra MS (2020) Studies on synchronizing seed germination in red sanders (Pterocarpus santalinus). J Trop Sci 32(1):66–71. https://doi.org/10.26525/jtfs32.1.66

    Article  Google Scholar 

  • Shiri M, Mudyiwa RM, Takawira M, Musara C, Gama T (2019) Effects of rooting media and indole-3-butyric acid (IBA) concentration on rooting and shoot development of Duranta erecta tip cutting. Afr J Plant Sci 13(10):279–285. https://doi.org/10.5897/AJPS2019.1851

    Article  CAS  Google Scholar 

  • Shree P, Yadav D, Singh VK, Chaube R, Tripathi YB (2019) Modulation of mTOR receptor in diabetic neuropathy by santalin A of lal chandan (Pterocarpus santalinus): an in-silico assessment by molecular docking. Int J Pharm Sci Res 10(3):1115–1121. https://doi.org/10.13040/IJPSR.0975-8232.10(3).1115-21

    Article  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–130

    CAS  PubMed  Google Scholar 

  • Soundarajan V, RaviKumar G, Murugesan K, Chandrashekhar BS (2016) A review on red sanders (Pterocarpus santalinus Linn.)-phytochemistry and pharmacological importance. World J Pharm Pharm Sci 5(6):667–689. https://doi.org/10.20959/wjpps20166-7047

    Article  CAS  Google Scholar 

  • Soundararajan V, Joshi SC (2012) Endemic possessions of Eastern Ghats: red sanders (Pterocarpus santalinus Linn.f.). Institute of Wood Science and Technology, Bangalore

    Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones—roles for auxin and gibberellin-critical reviews. Plant Sci 24(4):249–265. https://doi.org/10.1080/07352680500196108

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Kher MM, Soner D, Nataraj M (2019) Red sandalwood (Pterocarpus santalinus L.f.): biology, importance, propagation and micropropagation. J For Res 30(3):745–754. https://doi.org/10.1007/s11676-018-0714-6

    Article  Google Scholar 

  • UNEP-WCMC (2017) Technical report, report on species/country combinations selected for review by the Plants Committee following CoP16, CITES Project No. A-498 Annexure-I PC 23 Doc 15.2. pp 22–32

  • Venkateswarlu N, Reddy NV, Vijaya T, Sharma KK (2015) Antimicrobial and antioxidant activities of an endophytic fungi isolated from an endemic medicinal plant Pterocarpus santalinus. Int J Phytomedicine 6(4):523–528. http://www.arjoournals.org/index.php/ijpm/index

  • Vijayalakshmi KP, Renganayaki PR (2017) Effect of pre-sowing treatment on germination of red sander. Int J Curr Microbiol Appl Sci 6(4):168–173. https://doi.org/10.20546/ijcmas.2017.604.019

    Article  CAS  Google Scholar 

  • Vipranarayana S, Prasad TNVKV, Damodharam T (2012) In vitro seed germination and induction of enhanced shoot multiplication in Pterocarpus santalinus Linn.f.: an endemic medicinal plant of Seshachalam hills, Tirumala. Int J Pure Appl Sci Technol 9(2):118–126

    CAS  Google Scholar 

  • Vogel G (2005) How does a single somatic cell become a whole plant? Science 309:86. https://doi.org/10.1126/science.309.5731.86

    Article  CAS  PubMed  Google Scholar 

  • Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249. https://doi.org/10.1023/A:1015673200621

    Article  Google Scholar 

  • Warakagoda PS, Subasinghe S (2013) In-vitro propagation of Pterocarpus santalinus L. (red sandalwood) through tissue culture. J Nat Sci Found Srilanka 41(1):53–63

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support provided by SCIENCE & ENGINEERING RESEARCH BOARD (SERB), Department of Science and Technology, Government of India for the major research project under a core research grant to Dr. Nasim Akhtar (Principal Investigator) and Dr. K. Viswanatha Chaitanya (Co-investigator) (sanction order no. CRG/2018/000517 dated 24.6.2019) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The concept, layout, and design of the manuscript were conceived by the corresponding author NA. The whole manuscript, including the table and text, is developed and written by the first author TC. The manuscript was reviewed and edited several times by second the author KVC and NA.

Corresponding author

Correspondence to Nasim Akhtar.

Ethics declarations

Conflict of interest

All the authors declared that there is no conflict of interest with regard to any part of the manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, T., Chaitanya, K.V. & Akhtar, N. Analysis of regeneration protocols for micropropagation of Pterocarpus santalinus. Plant Biotechnol Rep 16, 1–15 (2022). https://doi.org/10.1007/s11816-021-00728-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-021-00728-8

Keywords

Navigation