Skip to main content
Log in

Growth response of Pterocarpus santalinus seedlings to native microbial symbionts (arbuscular mycorrhizal fungi and Rhizobium aegyptiacum) under nursery conditions

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The objective of this research was to improve the growth and biomass of Pterocarpus santalinus L.f. (an endangered leguminous tree) using native microbial symbionts such as arbuscular mycorrhizal fungi and Rhizobium associated with native populations of P. santalinus. The native arbuscular mycorrhizal fungi isolated from P. santalinus soils were identified as (1) Glomus fasciculatum; (2) Glomus geosporum; and Glomus aggregatum. A nitrogen-fixing microbial symbiont was isolated from the root nodules of P. santalinus and identified as Rhizobium aegyptiacum by 16s rRNA gene sequencing. These microbial symbionts were inoculated individually and in combination into P. santalinus seedling roots. After 90 days, growth and biomass had improved compared with uninoculated controls. Shoot and root lengths, number of leaves, stem circumference, number of root nodules, biomass, nutrient uptake and seedling quality index were significantly increased by a combined inoculation of arbuscular mycorrhizal fungi + Rhizobium aegyptiacum. It was concluded that native microbial symbionts positively influenced P. santalinus seedling growth which will be helpful for successful field establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arokiyaraj S, Martin S, Pernibam K, Marie AP, Beatrice V (2008) Free radical scavenging activity and HPTLC finger print of Pterocarpus santalinus L. An in vitro study. Ind J Sci Technol 1:1–3

    Google Scholar 

  • Arunkumar A, Joshi G (2014) Pterocarpus santalinus (Red sanders)—an endemic and endangered tree of India: current status, improvement and future. J Trop For Environ 4:1–10

    Google Scholar 

  • Arunkumara KKIV, Walpola BC, Subasinghe S, Yoon MH (2011) Pterocarpus santalinus L. (Rathbanduri): a review of its botany, uses, phytochemistry and pharmacology. J Kor Soc Appl Biol Chem 54:495–500

    Google Scholar 

  • Bai B, Vinod K, Kumar A, Choudhary AK (2016) Influence of dual inoculation of AM fungi and Rhizobium on growth indices production economics and nutrient use efficiencies garden pea (Pisum sativum L.). Commun Soil Sci Plant Anal 47:941–954

    Article  CAS  Google Scholar 

  • Bournaud C, Moulin L, Cnockaert M, de Faria S, Prn Y, Severac D, Vandamme P (2017) Paraburkholdenia piptadeniae sp. nov and Paraburknoldenia ribeironis sp. no. two root nodulating symbiotic species of Piptadenia gonacantha in Brazil. Int J Syst Evol Microbiol 67:432–440

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Ma S, Liu L (2008) Studies on phosphorus solubility activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol. 99:6702–6707

    Article  CAS  PubMed  Google Scholar 

  • Daft MJ, El-Giahmi AA (1975) Effects of Glomus infection on three legumes. In: Academic Endomycorrhiza (ed) Sanders FK and Tinker PS. Press, London, pp 581–592

    Google Scholar 

  • Dickson A, Leaf AL, Hosner JF (1960) Quality appraisal of white spruce and white pine seedling stock in forest nurseries. For Chron 36:10–13

    Article  Google Scholar 

  • Diouf D, Dupponnois R, Ba AT, Neyra M, Lasueur D (2005) Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in green house conditions. Funct Plant Biol 22:1143–1152

    Article  Google Scholar 

  • Gerdemann JW (1975) The development of function of roots. In: Torrey JG, Clawson D (eds) Vesicular arbuscular mycorrhizae. Academic Press, New York, pp 575–591

    Google Scholar 

  • Gerdemnann JW, Nicolson TH (1963) Spores of mycorrhizal endogen species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Graham PH (1969) Selective medium for growth of Rhizobium. Appl Microbiol 17:769–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herridge DR, Peoples MB, Boddey EM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • ISFR (2017) India State of Forest Report. Forest Survey of India Dehra Dun India, 36 p

  • Jackson ML (1973) Soil chemical analysis. Prentice Hall, New Delhi

    Google Scholar 

  • Karthikeyan A (2017) Impact of elevated CO2 in Casuarina equisetifolia rooted stem cuttings inoculated with Frankia. Symbiosis 92:89–94

    Article  CAS  Google Scholar 

  • Karthikeyan A, Arunprasad T (2018) Rhizosbium sp strain RIII 16s ribosomal RNA gene, partial sequence NCBI USA Accession No MH665677

  • Karthikeyan A, Muthukumar T (2006) Growth response of Acacia planifrons W. et. A to arbuscular mycorrhizal fungi as nitrogen fixing bacteria under nursery conditions. For Tree Live 16:269–275

    Article  Google Scholar 

  • Karthikeyan A, Sivapriya NB (2018) Response of Bruguiera sexangula propagules to beneficial microbes in the nursery. J For Res 29:1093–1098

    Article  CAS  Google Scholar 

  • Khan BM, Hossain MK, Mridha MAU (2014) Improving Acacia auriculiformis seedling using microbial inoculation (Beneficial microorganisms). J For Res 25:359–364

    Article  CAS  Google Scholar 

  • Korir H, Mungai NW, Jhuta M, Haxiba Y, Masso C (2017) Co inoculation effect of Rhizobia and plant growth promoting Rhizobacteria on common bean gram in low phosphorus soil. Ann Plant Sci 8:141. https://doi.org/10.3389/fpts/2017.00441

    Article  Google Scholar 

  • Kukrety S, Dwivedi P, Joke S, Aivalapathi JRE (2013) Stakeholders’perceptions on developing sustainable red sanders (Pterocarpus santalinus L) wood trade on Andhra Pradesh, India. For Policy Econ 26:43–53

    Article  Google Scholar 

  • Lammel DR, Cruz LM, Mescolotte D, Stürner SL, Cardioso EJBN (2015) Woody Mimosa species are nodulated by Burkholderia in ombrophlous forest soils and their symbioses are enhanced by arbuscular mycorrhizal fungi (AMF). Plant Soil 373:123–135

    Article  CAS  Google Scholar 

  • Manjunatha BK (2006) Hepatoprotective activity of Pterocarpus santalinus L. f. an endangered plant. Ind J Pharmocol 38:25–28

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K (2010) Growth response and nutrient utilization of Casuarina equisetifolia seedlings inoculated with bio inoculants under tropical nursery conditions. New For 40:101–118

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K (2018) Coinoculation of bioinoculants improve Acacia auriculiformis seedling growth and quality in a tropical Alfisol soil. J For Res 29(3):663–673

    Article  CAS  Google Scholar 

  • Nagaraju N, Prasad M, Gopalakrishna G, Rao KN (1991) Blood sugar lowering effect of Pterocarpus santalinus (Red sanders) wood extract in difference rat models. Int J Pharmcogn 29:141–144

    Google Scholar 

  • Philips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and AM fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Porter WM (1979) The most probable number method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi un soil. Aust J Soil Res 17:515–519

    Article  Google Scholar 

  • Poudel S (2003) Vegetation and prominent flora Begnash Tal to Tara Hill Annapurna conservation area project, Kasoki District. Him J Sci 1:43–46

    Google Scholar 

  • Prakash E, Sha PS, Khan V, Vivek TS, Rao S, Meru ES (2006) Micropropagation of red sanders (Pterocarpus santalinus L) using mature nodal ex plants. J For Res 11:329–335

    Article  Google Scholar 

  • Prasad K, Aggarwal A, Yadav K, Tanwan A (2012) Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescens on Chrysanthemum indicum L. J Soil Sci Nutr 12:453–462

    Google Scholar 

  • Rajan SK, Reddy BJD, Bagyaraj DJ (2000) Screening of arbuscular mycorrhizal fungi for their symbiotic efficiency with Tectona grandis. For Ecol Manag 126:91–95

    Article  Google Scholar 

  • Rajasekar A, Babu G, Prasad Reddy TKK (2002) Effect of dual inoculation of Rhizobium and vesicular arbuscular mycorrhizae on biomass of red sanders Pterocarpus santalinus. Leg Res Int J 25: ID.AZCC3940

  • Raju K, Nagaraju A (1999) Geo botany of red sanders (Pterocarpus santalinus) and case study from the south eastern portion of Andhra Pradesh. Environ Geol 37:340–344

    Article  CAS  Google Scholar 

  • Rao BK, Giri R, Kesavalu MM, Apparao C (2001) Effect of oral administration of bark extract of Pterocarpus santalinus L on blood glucose levels in experimental animals. J Ethanopharmacol 74:69–74

    Article  Google Scholar 

  • Ravindranath NA, Murthy IK, Priya I, Upgupta S, Mehra S, Nalin S (2014) Forest area estimation and reporting: implications for conservation, management and REDD+. Curr Sci 106:1201–1206

    Google Scholar 

  • Read DJ, Kouchelai HK, Hodgson J (1976) Vesicular arbuscular mycorrhizae in natural vegetation system. New Phytol 77:641–653

    Article  Google Scholar 

  • Redante EF, Reeves FB (1981) Interactions between vesicular arbuscular mycorrhiza and Rhizobium and their effect as sweet vetch growth. Soil Sci 132:410–415

    Article  Google Scholar 

  • Sanjappa M (2001) Leguminosae. In: Singh NP, Singh DK (eds) Floristic diversity and conservation strategies in India, vol 4. Botanical survey of India, Dehra Dun, pp 1846–1960

    Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi, 3rd edn. Synergistic Publications University of Florida, Gainesville, p 286

    Google Scholar 

  • Smith SE (1980) Mycorrhizas of autotrophic higher plants. Biol Rev 55:475–570

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives in the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Soundarrajan V, Ravikumar G, Murugesan K, Chandrasekar BS (2016) A review on red sanders (Pterocarpus santalinus L.) Phytochemistry and Pharmacological importance. W J Pharm Pharmaceut Sci 5:667–689

    Google Scholar 

  • UNEP-WCMC (2017) Report on species/country combinations selected for review by the plants committee following COP16 UNEP-WCMC. Cambridge, U.K., 79 p

  • Yooyongwech S, Phankinusang N, Cha Um S, Supaibulwat K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble and proline accumulation. Plant Growth Regul 69:285–293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumugam Karthikeyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was financially supported by a research project (No. IFGTB/NFRP 168) of the Indian Council of Forestry Research and Education, Dehra Dun.

The online version is available at http://www.springerlink.com.

Corresponding editor: Yanbo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, A., Arunprasad, T. Growth response of Pterocarpus santalinus seedlings to native microbial symbionts (arbuscular mycorrhizal fungi and Rhizobium aegyptiacum) under nursery conditions. J. For. Res. 32, 225–231 (2021). https://doi.org/10.1007/s11676-019-01072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-01072-y

Keywords

Navigation