Skip to main content

Advertisement

Log in

Fabrication of composite membranes for pervaporation of tetrahydrofuran-water: Optimization of intrinsic property by response surface methodology and studies on vulcanization mechanism by density functional theory

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM) optimized accelerator-to-sulfur (A/S) ratio was used to synthesize semi efficiently vulcanized styrene butadiene rubber (SBRSEV0) membrane possessing optimum balance between tensile strength (TS) and elongation at break (EAB). In addition, composite membranes, such as SBRSEV8, SBRSEV12 and SBRSEV24, were fabricated via incorporating 8, 12 and 24 wt% carbon black filler (CBF), respectively. The changes in physicochemical properties, as a result of crosslinking and CBF loading, were determined by analyzing CP MAS 13C-NMR, FTIR, TGA, DSC, XRD, FESEM-EDX and crosslink densities. Several bi-/poly-sulfidic products, formed by crosslinking precursors of SBR in accelerated sulfur vulcanization, were examined to ascertain the unambiguous reaction mechanism. In this regard, an extensive density functional theory (DFT) based optimization was conducted to apprehend the relative variation in stabilities of several mono-/poly-crosslinked configurations by measuring dipole moments and ground state energies. Moreover, intrinsic membrane properties, such as partial permeabilities and diffusion coefficients, were measured at varying conditions. RSM was employed to optimize membrane efficiency resulting from individual and/or interactive effects of input variables. For the first time, systematic three-stage RSM based optimization (i.e., TS/EAB, total flux (TF)/separation factor (SF) and partial permeabilities) was used to ensure excellent balance between TS/EAB (5.78 MPa/499.008% at 2.32 and 3.29 wt% of A and S, respectively), minimum TF/maximum SF (36.90 g m–2 h–1/202.46 at 35 °C, 0.97 wt% tetrahydrofuran (THF) and 24 wt% CBF) and minimum/maximum partial permeabilities of water/THF (2.94×10–8/4.64×10–8 Barrer at 35 °C, 0.97 wt% THF and 11.49 wt% CBF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Karmakar, M. Mahapatra and N. R. Singha, Korean J. Chem. Eng., 34, 1416 (2017).

    Article  CAS  Google Scholar 

  2. N. R. Singha and S. K. Ray, J. Appl. Polym. Sci., 124, E99 (2012).

    Google Scholar 

  3. N. R. Singha, T. K. Parya and S. K. Ray, J. Membr. Sci., 340, 35 (2009).

    Article  CAS  Google Scholar 

  4. S. Roy and N. R. Singha, Membranes, 7 (2017), DOI:10. 3390/membranes7030053.

    Google Scholar 

  5. N. R. Singha, S. Kar, S. Ray and S. K. Ray, Chem. Eng. Process., 48, 1020 (2009).

    Article  CAS  Google Scholar 

  6. N. R. Singha, S. B. Kuila, P. Das and S. K. Ray, Chem. Eng. Process., 48, 1560 (2009).

    Article  CAS  Google Scholar 

  7. N. R. Singha, S. Ray, S. K. Ray and B. B. Konar, J. Appl. Polym. Sci., 121, 1330 (2011).

    Article  CAS  Google Scholar 

  8. N. R. Singha, P. Das and S. K. Ray, J. Ind. Eng. Chem., 19, 2034 (2013).

    Article  CAS  Google Scholar 

  9. M. Mahapatra, M. Karmakar, B. Mondal and N. R. Singha, RSC Adv., 6, 69387 (2016).

    Article  CAS  Google Scholar 

  10. M. D. Kurkuri, J. N. Nayak, M. I. Aralaguppi, B. V. K. Naidu and T. M. Aminabhavi, J. Appl. Polym. Sci., 98, 178 (2005).

    Article  CAS  Google Scholar 

  11. M. Khayet, C. Cojocaru and G. Zakrzewska-Trznadel, J. Membr. Sci., 321, 272 (2008).

    Article  CAS  Google Scholar 

  12. M. Catarino, A. Ferreira and A. Mendes, J. Membr. Sci., 341, 51 (2009).

    Article  CAS  Google Scholar 

  13. V. García, J. L. Aguirre, E. Pongrácz, P. Perämäki and R. L. Keiski, J. Membr. Sci., 338, 111 (2009).

    Article  CAS  Google Scholar 

  14. S. B. Kuila, S. K. Ray, P. Das and N. R. Singha, Chem. Eng. Process., 50, 391 (2011).

    Article  CAS  Google Scholar 

  15. P. Das, S. K. Ray, S. B. Kuila, H. S. Samanta and N. R. Singha, Sep. Purif. Technol., 81, 159 (2011).

    Article  CAS  Google Scholar 

  16. N. R. Singha, A. Dutta, M. Mahapatra, M. Karmakar, H. Mondal, P. K. Chattopadhyay and D. K. Maiti, ACS Omega, 3, 472 (2018).

    Article  CAS  Google Scholar 

  17. N. R. Singha, M. Mahapatra, M. Karmakar, H. Mondal, A. Dutta, M. Deb, M. Mitra, C. Roy, P. K. Chattopadhyay and D. K. Maiti, ACS Omega, 3, 4163 (2018).

    Article  CAS  Google Scholar 

  18. H. S. Samanta, S. K. Ray, P. Das and N. R. Singha, J. Chem. Technol. Biot., 87, 608 (2012).

    Article  CAS  Google Scholar 

  19. N. Valentínyi, E. Cséfalvay and P. Mizsey, Chem. Eng. Res. Des., 91, 174 (2013).

    Article  CAS  Google Scholar 

  20. N. R. Singha, S. Kar and S. K. Ray, Sep. Sci. Technol., 44, 422 (2009).

    Article  CAS  Google Scholar 

  21. S. Ray, N. R. Singha and S. K. Ray, Chem. Eng. J., 149, 153 (2009).

    Article  CAS  Google Scholar 

  22. N. R. Singha and S. K. Ray, Sep. Sci. Technol., 45, 2298 (2010).

    Article  CAS  Google Scholar 

  23. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley, New York (2001).

    Google Scholar 

  24. A. S. Z. Naseri and A. J. Arani, Radiat. Phys. Chem., 115, 68 (2015).

    Article  CAS  Google Scholar 

  25. S. Gunasekaran, R. K. Natarajan and A. Kala, Spectrochim. Acta A, 68, 323 (2007).

    Article  CAS  Google Scholar 

  26. X. Liu, S. Zhao, X. Zhang, X. Li and Y. Bai, Polymer, 55, 1964 (2014).

    Article  CAS  Google Scholar 

  27. V. Pouchaname, A. Tinabaye, R. Madivanane and Dr. Renukadevi, IRACST-Engineering Science and Technology: An International Journal, 2, 752 (2012).

    Google Scholar 

  28. M. J. Fernandez-Berridi, N. Gonzalez, A. Mugica and C. Bernicot, Thermochim. Acta, 444, 65 (2006).

    Article  CAS  Google Scholar 

  29. Y. S. Lee, W. Lee, S. Cho, I. Kim and C. Ha, J. Anal. Appl. Pyrolysis, 78, 85 (2007).

    CAS  Google Scholar 

  30. H. Li, H. Kang, W. Zhang, S. Zhang and J. Li, Int. J. Adhes. Adhes., 66, 59 (2016).

    Article  CAS  Google Scholar 

  31. G. Mertz, F. Hassouna, V. Toniazzo, A. Dahoun and D. Ruch, J. Eng. Mater. Technol., 134, 0109031 (2012).

    Article  CAS  Google Scholar 

  32. P. A. Ajibade and B. C. Ejelonu, Spectrochim. Acta A, 113, 408 (2013).

    Article  CAS  Google Scholar 

  33. L. Pellicioli, S. K. Mowdood, F. Negroni, D. D. Parker and J. L. Koenig, Rubber Chem. Technol., 75, 65 (2002).

    Article  CAS  Google Scholar 

  34. N. R. Singha, M. Karmakar, M. Mahapatra, H. Mondal, A. Dutta, C. Roy and P. K. Chattopadhyay, Polym. Chem., 8, 3211 (2017).

    Article  CAS  Google Scholar 

  35. N. R. Singha, S. Kar and S. K. Ray, Sep. Sci. Technol., 44, 1970 (2009).

    Article  CAS  Google Scholar 

  36. A. Arockiasamy, H. Toghiani, D. Oglesby, M. F. Horstemeyer, J. L. Bouvard and R. L. King, J. Therm. Anal. Calorim., 111, 535 (2013).

    Article  CAS  Google Scholar 

  37. S. J. Lue, W. W. Chen and S. F. Wang, Sep. Sci. Technol., 44, 3412 (2009).

    Article  CAS  Google Scholar 

  38. P. Li, L. Yin, G. Song, J. Sun, L. Wang and H. Wang, Appl. Clay. Sci., 40, 38 (2008).

    Article  CAS  Google Scholar 

  39. S. Ray and S. K. Ray, J. Membr. Sci., 270, 132 (2006).

    Article  CAS  Google Scholar 

  40. N. R. Singha, M. Karmakar, M. Mahapatra, H. Mondal, A. Dutta, M. Deb, M. Mitra, C. Roy and P. K. Chattopadhyay, J. Mater. Chem. A, 6, 8078 (2018).

    Article  CAS  Google Scholar 

  41. P. K. Chattopadhyay, N. C. Das and S. Chattopadhyay, Compos. Part A: Appl. Sci. Manuf., 42, 1049 (2011).

    Article  CAS  Google Scholar 

  42. R. Guo, C. Hu, B. Li and Z. Jiang, J. Membr. Sci., 289, 191 (2007).

    Article  CAS  Google Scholar 

  43. M. Karmakar, M. Mahapatra, A. Dutta, P. K. Chattopadhyay and N. R. Singha, Int. J. Biol. Macromol., 102, 438 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. M. Mahapatra, M. Karmakar, A. Dutta, H. Mondal, J. S. D. Roy, P. K. Chattopadhyay and N. R. Singha, J. Environ. Chem. Eng., 6, 289 (2018).

    Article  CAS  Google Scholar 

  45. R. V. Kumar, I. G. Moorthy and G. Pugazhenthi, RSC Adv., 5, 87645 (2015).

    Article  CAS  Google Scholar 

  46. N. R. Singha, M. Mahapatra, M. Karmakar, A. Dutta, H. Mondal and P. K. Chattopadhyay, Polym. Chem., 8, 6750 (2017).

    Article  CAS  Google Scholar 

  47. P. Das and S. K. Ray, J. Ind. Eng. Chem., 34, 321 (2016).

    Article  CAS  Google Scholar 

  48. S. Claes, P. Vandezande, S. Mullens, P. Adriaensens, R. Peeters, F. H. J. Maurer and M. K. V. Bael, J. Membr. Sci., 389, 459 (2012).

    Article  CAS  Google Scholar 

  49. Y. Nagase, T. Ando and C. M. Yun, React. Funct. Polym., 67, 1252 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayan Ranjan Singha.

Electronic supplementary material

11814_2018_99_MOESM1_ESM.pdf

Fabrication of composite membranes for pervaporation of tetrahydrofuran-water: Optimization of intrinsic property by response surface methodology and studies on vulcanization mechanism by density functional theory

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, M., Karmakar, M., Dutta, A. et al. Fabrication of composite membranes for pervaporation of tetrahydrofuran-water: Optimization of intrinsic property by response surface methodology and studies on vulcanization mechanism by density functional theory. Korean J. Chem. Eng. 35, 1889–1910 (2018). https://doi.org/10.1007/s11814-018-0099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0099-4

Keywords

Navigation