Skip to main content
Log in

Bio-electrochemical conversion of atmospheric N2 to ammonium using free-living diazotrophs

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effects of electrochemical reducing power on enrichment, growth, and ammonium production of freeliving diazotrophs from rhizosphere soil were evaluated. Soil bacteria were cultivated in a conventional bioreactor (CBR) and an electrochemical bioreactor (EBR), both containing a neutral red-modified graphite felt (NR-GF) cathode and a platinum anode, but with electricity charged to the EBR only. Temperature gradient gel electrophoresis identified 21 species from rhizosphere soil, and 17 and seven species from the CBR and EBR, respectively, after 40 days of incubation. Six species from the CBR and five species from the EBR were diazotrophs. The bacterial community biomass and the ammonium content in the bacterial culture were, respectively, 1.6 and 2 times higher in the EBR than in the CBR. These results indicate that the electrochemical reducing power generated from the NR-GF may be a driving force in the activation of enrichment, growth, and N2-fixing metabolism of diazotrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Boyd, R. K. Lange, A. C. Mitchell, J. R. Having, T. L. Hamilton, M. J. Lafreniére, E. L. Shock, J. W. Peters and M. Skidmore, Appl. Environ. Microbiol., 77, 4778 (2011).

    Article  CAS  Google Scholar 

  2. B. M. Bebout, M. W. Fitzpatrick and H. W. Paerl, Appl. Environ. Microbiol., 59, 1495 (1993).

    CAS  Google Scholar 

  3. C. R. Kuske, L. O. Ticknor, M. E. Miller, J. M. Dunbar, J. A. Davis, S. M. Barns and J. Belnap, Appl. Environ. Microbiol., 68, 1854 (2002).

    Article  CAS  Google Scholar 

  4. N. Z. Lupwayi, W. A. Rice and G. W. Clayton, Soil Biol. Biochem., 30, 1733 (1998).

    Article  CAS  Google Scholar 

  5. C. M. Yeager, J. L. Kornosky, D. C. Housman, E. E. Grote, J. Belnap and C. R. Kuske, Appl. Environ. Microbiol., 70, 973 (2004).

    Article  CAS  Google Scholar 

  6. T. H. De Luca, L. E. Drinkwater, B. A. Wiefling and D. M. DeNicola, Biol. Fertil. Soils, 23, 140 (1996).

    Article  Google Scholar 

  7. J. H. P. Kahindi, P. Woomer, T. George, F. M. DeSouza Moreira, N. K. Karanja and K. E. Giller, Appl. Soil Ecol., 6, 55 (1997).

    Article  Google Scholar 

  8. R. W. F. Hardy and A. J. D’Eustachio, Biochem. Biophys. Res. Commun., 15, 314 (1964).

    Article  CAS  Google Scholar 

  9. S. P. J. Kremers, G. J. de Bruijn, T. L. S. Visscher, W. van Mechelen, N. K. de Vries and J. Brug, Int. J. Behav. Nutr. Phys. Acta, 3, 9 (2006).

    Article  Google Scholar 

  10. D. H. Park and J. G. Zeikus, J. Bacteriol., 181, 2403 (1999).

    CAS  Google Scholar 

  11. D. H. Park, M. Laivenieks, M. V. Guettler, M. K. Jain and J. G. Zeikus, Appl. Environ. Microbiol., 65, 2912 (1999).

    CAS  Google Scholar 

  12. K. Kanamori, R. L. Weiss and J. D. Roberts. J. Bacteriol., 172, 1962 (1990).

    CAS  Google Scholar 

  13. R. W. F. Hardy and E. Knight, Biochim. Biophys. Acta, 122, 520 (1966).

    Article  CAS  Google Scholar 

  14. H. S. Kang, B. K. Na and D. H Park, Biotechnol. Lett., 29, 1277 (2007).

    Article  CAS  Google Scholar 

  15. B. Y. Jeon, I. L. Jung and D. H. Park, J. Microbiol. Biotechnol., 21, 90 (2011).

    Article  Google Scholar 

  16. S. M. Hosseini, A. Hamidi, A. Moghadassi and S. S. Jadaeni, Korean J. Chem. Eng., 32, 429 (2015).

    Article  CAS  Google Scholar 

  17. P. Y. Cheung and B. K. Kinkle, Appl. Environ. Microbiol., 67, 2222 (2001).

    Article  CAS  Google Scholar 

  18. C. H. Orr, A. James, C. Leifert, J. M. Cooper and S. P. Cummings, Appl. Environ. Microbiol., 77, 911 (2010).

    Article  Google Scholar 

  19. C. H. Yang and D. E. Crowley, Appl. Environ. Microbiol., 66, 345 (2000).

    Article  CAS  Google Scholar 

  20. C. M. Holl and J. P. Montoya, J. Phycol., 41, 1178 (2005).

    Article  CAS  Google Scholar 

  21. C. Christiansen-Weniger and J. A. van Ven, Biol. Fertil. Soils, 12, 100 (1991).

    Article  CAS  Google Scholar 

  22. B. Y. Jeon, I. L. Jung and D. H. Park, J. Environ. Protect., 3, 55 (2012).

    Article  CAS  Google Scholar 

  23. N. A. E. Agawin, Limnol. Oceanogr., 52, 2233 (2007).

    Article  CAS  Google Scholar 

  24. J. C. F. Oritiz-Marquez, M. D. Nascimento, M. de los Angeles Dublan and L. Curatti, Appl. Environ. Microbiol., 78, 2345 (2012).

    Article  Google Scholar 

  25. G. W. Chen, S. J. Choi, J. H. Cha, T. H. Lee and C. W. Kim, Korean J. Chem. Eng., 27, 1513 (2010).

    Article  CAS  Google Scholar 

  26. K. T. Shanmugam and R. C. Valentine, Proc. Natl. Acad. Sci. USA, 72, 136 (1975).

    Article  CAS  Google Scholar 

  27. R. Colnaghi, A. Green, L. He, P. Rudnick and C. Kennedy, Plant Soil, 194, 145 (1997).

    Article  CAS  Google Scholar 

  28. M. Hongo and M. Iwahara, Agric. Biol. Chem., 43, 2075 (1979).

    CAS  Google Scholar 

  29. K. B. Gregory, D. R. Bond and D. R. Lovely, Environ. Microbiol., 6, 596 (2004).

    Article  CAS  Google Scholar 

  30. K. Rabaey, P. Girguis and L. K. Nielsen, Curr. Opin. Biotechnol., 22, 1 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, I.L., Park, Y.C. & Park, D.H. Bio-electrochemical conversion of atmospheric N2 to ammonium using free-living diazotrophs. Korean J. Chem. Eng. 33, 1865–1871 (2016). https://doi.org/10.1007/s11814-016-0011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0011-z

Keywords

Navigation