Skip to main content
Log in

Enhanced Degradation of Atrazine by Soil Microbial Fuel Cells and Analysis of Bacterial Community Structure

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Atrazine degradation in soil microbial fuel cells (MFCs) under different anode depths and initial concentrations is investigated for different redox soil conditions, and the microbial communities in the anode and different layers are evaluated. Atrazine degradation is fastest in the upper layer (aerobiotic), followed by the lower layer (anaerobic). A removal efficiency and a half-life of 91.69% and 40 days, respectively, are reported for an anode depth of 4 cm. The degradation rate is found to be dependent on current generation in the soil MFCs rather than on electrode spacing. Furthermore, the degradation rate is inhibited when the initial atrazine concentration is increased from 100 to 750 mg/kg. Meanwhile, the exoelectrogenic bacteria, Deltaproteobacteria and Geobacter, are enriched on the anode and the lower layer in the soil MFCs, while atrazine-degrading Pseudomonas is only observed in very low proportions. In particular, the relative abundances of Deltaproteobacteria and Geobacter are higher for lower initial atrazine concentrations. These results demonstrate that the mechanism of atrazine degradation in soil MFCs is dependent on bioelectrochemistry rather than on microbial degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accinelli, C., Dinelli, G., Vicari, A., & Catizone, P. (2001). Atrazine and metolachlor degradation in subsoils. Biology and Fertility of Soils, 33, 495–500.

    Article  CAS  Google Scholar 

  • An, J., Kim, B., Nam, J., Ng, H. Y., & Chang, I. S. (2013). Comparison in performance of sediment microbial fuel cells according to depth of embedded anode. Bioresource Technology, 127, 138–142.

    Article  CAS  Google Scholar 

  • Assaf, N. A., & Turco, R. F. (2010). Influence of carbon and nitrogen application on the mineralization of atrazine and its metabolites in soil. Pest Management Science, 41, 41–47.

    Article  Google Scholar 

  • Bastos, A. C., & Magan, N. (2009). Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. International Biodeterioration and Biodegradation, 63, 389–394.

    Article  CAS  Google Scholar 

  • Behki, R. M., & Khan, S. U. (1986). Degradation of atrazine by pseudomonas—n-dealkylation and dehalogenation of atrazine and its metabolites. Journal of Agricultural and Food Chemistry, 34, 746–749.

    Article  CAS  Google Scholar 

  • Blumhorst, M. R., & Weber, J. B. (2010). Chemical versus microbial degradation of cyanazine and atrazine in soils. Pesticide Science, 42, 79–84.

    Article  Google Scholar 

  • Buitrón, G., & Moreno-Andrade, I. (2014). Performance of a single-chamber microbial fuel cell degrading phenol: effect of phenol concentration and external resistance. Applied Biochemistry and Biotechnology, 174, 2471.

    Article  Google Scholar 

  • Cabezas, A., Pommerenke, B., Boon, N., & Friedrich, M. W. (2015). Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil. Env Microbiol Rep, 7, 489–497.

    Article  CAS  Google Scholar 

  • Cao, X., Song, H. L., Yu, C. Y., & Li, X. N. (2015). Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell. Bioresource Technology, 189, 87–93.

    Article  CAS  Google Scholar 

  • Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y., & Kim, I. S. (2009). Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technology, 100, 3518–3525.

    Article  CAS  Google Scholar 

  • Chan-Cupul, W., Heredia-Abarca, G., & Rodriguez-Vazquez, R. (2016). Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes, 51, 298–308.

    Article  CAS  Google Scholar 

  • Chung, K. H., Ro, K. S., & Roy, D. (1995a). Atrazine biotransformation in wetland sediment under different nutrient conditions-i: anaerobic. Journal of Environmental Science & Health Part A Environmental Science & Engineering & Toxicology, A30, 121–131.

    Google Scholar 

  • Chung, K. H., Ro, K. S., & Roy, D. (1995b). Atrazine biotransformation in wetland sediment under different nutrient conditions.1. Anaerobic. J. Environ. Sci. Health Part A-Environ. Sci. Eng. Toxic Hazard. Subt. Control, 30, 109–120.

    Google Scholar 

  • Coady, K. K., Murphy, M. B., Villeneuve, D. L., Hecker, M., Jones, P. D., Carr, J. A., Solomon, K. R., Smith, E. E., Van, D. K. G., & Kendall, R. J. (2005). Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus Laevis. Ecotoxicology and Environmental Safety, 62, 160.

    Article  CAS  Google Scholar 

  • DeLaune, R. D., Devai, I., Mulbah, C., Crozier, C., & Lindau, C. W. (1997). The influence of soil redox conditions on atrazine degradation in wetlands. Agriculture, Ecosystems & Environment, 66, 41–46.

    Article  CAS  Google Scholar 

  • Delwiche, K. B., Lehmann, J., & Walter, M. T. (2014). Atrazine leaching from biochar-amended soils. Chemosphere, 95, 346–352.

    Article  CAS  Google Scholar 

  • Deng, H., Wu, Y. C., Zhang, F., Huang, Z. C., Chen, Z., Xu, H. J., & Zhao, F. (2014). Factors affecting the performance of single-chamber soil microbial fuel cells for power generation. Pedosphere, 24, 330–338.

    Article  CAS  Google Scholar 

  • Dichristina, T. J. (1992). Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. Journal of Bacteriology, 174, 1891–1896.

    Article  CAS  Google Scholar 

  • Elsheekh, M. M., Kotkat, H. M., & Hammouda, O. H. (1994). Effect of atrazine herbicide on growth, photosynthesis, protein synthesis, and fatty acid composition in the unicellular green alga Chlorella kessleri. Ecotoxicology and Environmental Safety, 29, 349–358.

    Article  CAS  Google Scholar 

  • Fang, Z., Cheng, S., Cao, X., Wang, H., & Li, X. (2016). Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland. Environmental Technology, 1-30.

  • Fang, Z., Song, H. L., Cang, N., & Li, X. N. (2015). Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosensors & Bioelectronics, 68, 135.

    Article  CAS  Google Scholar 

  • Hamdan, H. Z., Salama, D. A., Hari, A. R., Semerjian, L., & Saikaly, P. (2017). Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities. Sci. Total Environ., 575, 1453–1461.

    Article  CAS  Google Scholar 

  • Hong, S. W., Chang, I. S., Choi, Y. S., & Chung, T. H. (2009). Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresource Technology, 100, 3029–3035.

    Article  CAS  Google Scholar 

  • Huang, D. Y., Zhou, S. G., Chen, Q., Zhao, B., Yuan, Y., & Zhuang, L. (2011). Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chemical Engineering Journal, 172, 647–653.

    Article  CAS  Google Scholar 

  • Jung, S., & Regan, J. M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Applied Microbiology and Biotechnology, 77, 393–402.

    Article  CAS  Google Scholar 

  • Kumar, A., & Singh, N. (2016). Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture. Environmental Monitoring and Assessment, 188, 12.

    Article  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  • Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology, 14, 512–518.

    Article  CAS  Google Scholar 

  • Nealson, K. H., & Myers, C. R. (1992). Microbial reduction of manganese and iron: new approaches to carbon cycling. Applied and Environmental Microbiology, 58, 439–443.

    CAS  Google Scholar 

  • Ralebitso, T. K., Senior, E., & Van Verseveld, H. W. (2002). Microbial aspects of atrazine degradation in natural environments. Biodegradation, 13, 11–19.

    Article  Google Scholar 

  • Rismani-Yazdi, H., Christy, A. D., Carver, S. M., Yu, Z., Dehority, B. A., & Tuovinen, O. H. (2011). Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresource Technology, 102, 278–283.

    Article  CAS  Google Scholar 

  • Ro, K. S., & Chung, K. H. (1995). Atrazine biotransformation in wetland sediment under different nutrient conditions. 2. Aerobic. J. Environ. Sci. Health Part A-Environ. Sci. Eng. Toxic Hazard. Subt. Control, 30, 121–131.

    Google Scholar 

  • Sajana, T. K., Ghangrekar, M. M., & Mitra, A. (2014). Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water. Aquacultural Engineering, 61, 17–26.

    Article  Google Scholar 

  • Song, H.-L., Zhang, S., Yang, X.-L., Chen, T.-Q., & Zhang, Y.-Y. (2017). Coupled effects of electrical stimulation and antibiotics on microbial community in three-dimensional biofilm-electrode reactors. Water, Air, & Soil Pollution, 228, 83.

    Article  Google Scholar 

  • Sparling, G., Dragten, R., Aislabie, J., & Fraser, R. (1998). Atrazine mineralisation in New Zealand topsoils and subsoils: influence of edaphic factors and numbers of atrazine-degrading microbes. Australian Journal of Soil Research, 36, 557–571.

    Article  CAS  Google Scholar 

  • Sun, J., Hu, Y. Y., Bi, Z., & Cao, Y. Q. (2009). Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresource Technology, 100, 3185–3192.

    Article  CAS  Google Scholar 

  • Vanderheyden, V., Debongnie, P., & Pussemier, L. (1997). Accelerated degradation and mineralization of atrazine in surface and subsurface soil materials. Pesticide Science, 49, 237–242.

    Article  CAS  Google Scholar 

  • Wüst, S., & Hock, B. (1992). A sensitive enzyme immunoassay for the detection of atrazine based upon sheep antibodies. Analytical Letters, 25, 1025–1037.

    Article  Google Scholar 

  • Wang, H., Song, H., Yu, R., Cao, X., Fang, Z., & Li, X. (2016). New process for copper migration by bioelectricity generation in soil microbial fuel cells. Environemental Science and Pollution Research, 23, 13147–13154.

    Article  CAS  Google Scholar 

  • Wang, H., Yi, S., Cao, X., Fang, Z., & Li, X. (2017). Reductive dechlorination of hexachlorobenzene subjected to several conditions in a bioelectrochemical system. Ecotoxicology and Environmental Safety, 139, 172–178.

    Article  Google Scholar 

  • Wang, J., Zhu, L., Wang, Q., Wang, J., & Xie, H. (2014). Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6. PloS One, 9, e107270.

    Article  Google Scholar 

  • Wang, X., Cai, Z., Zhou, Q., Zhang, Z., & Chen, C. (2012). Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnology and Bioengineering, 109, 426–433.

    Article  CAS  Google Scholar 

  • Wilhelms, K. W., Cutler, S. A., Proudman, J. A., Carsia, R. V., Anderson, L. L., & Scanes, C. G. (2006). Lack of effects of atrazine on estrogen-responsive organs and circulating hormone concentrations in sexually immature female Japanese quail (Coturnix coturnix japonica). Chemosphere, 65, 674–681.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Provincial Natural Science Foundation of Jiangsu, China (BK20171351), the National Natural Science Foundation of China (21277024), and the Fundamental Research Funds for the Central Universities (2242016K41042) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianning Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, L., Cao, X. et al. Enhanced Degradation of Atrazine by Soil Microbial Fuel Cells and Analysis of Bacterial Community Structure. Water Air Soil Pollut 228, 308 (2017). https://doi.org/10.1007/s11270-017-3495-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3495-1

Keywords

Navigation