Skip to main content
Log in

Numerical investigation on interface enhancement mechanism of Ag-SnO2 contact materials with Cu additive

Cu添加剂对Ag-SnO2触点材料界面增强机理的数值模拟

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The electrical contact and mechanical performances of Ag-SnO2 contact materials are often improved by additives, especially Cu and its oxides. To reveal the improvement mechanism of metal additive, the effects of Cu nanoparticles on the interface strength and failure behavior of the Ag-SnO2 contact materials are investigated by numerical simulations and experiments. Three-dimensional representative volume element (RVE) models for the Ag-SnO2 materials without and with Cu nanoparticles are established, and the cohesive zone model is used to simulate the interface debonding process. The results show that the stress—strain relationships and failure modes predicted by the simulation agree well with the experimental ones. The adhesion strengths of the Ag/SnO2 and Ag/Cu interfaces are respectively predicted to be 100 and 450 MPa through the inverse method. It is found that the stress concentration around the SnO2 phase is the primary reason for the interface debonding, which leads to the failure of Ag-SnO2 contact material. The addition of Cu particles not only improves the interface strength, but also effectively suppresses the initiation and propagation of cracks. The results have an reference value for improving the processability of Ag based contact materials.

摘要

Ag-SnO2 触点材料的电接触和力学性能常采用添加剂(特别是铜及其氧化物)来改善. 为揭示金属添加剂的改善机制, 采用实验和数值模拟相结合的方法研究了Cu 纳米颗粒对Ag-SnO 2 触点材料的界面强度和失效行为的影响. 建立了有/无Cu 纳米颗粒的Ag-SnO 2 材料的三维代表性体积元(RVE)模型, 通过内聚力模型模拟了界面脱粘过程. 结果表明, 模拟获得的应力& minus; 应变曲线和破坏模式与实验结果吻合良好; 通过反推法预测得到Ag/SnO2 和Ag/Cu 界面的强度分别为100 和450 MPa. 研究发现, SnO2 相周围的应力集中是引起界面脱粘的主要原因, 从而导致Ag-SnO 2 触点材料失效; Cu 颗粒的加入不仅提高了界面强度, 而且有效抑制了裂纹的萌生和扩展. 研究结果对提高银基触点材料的加工性能具有参考价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRAUNOVIC M, MYSHKIN N K, KONCHITS V. Electrical contacts: Fundamentals, applications and technology [M]. CRC Press, 2006. DOI: https://doi.org/10.1201/9780849391088.

  2. LUNGU M, GAVRILIU S, CANTA T, et al. AgSnO2 sintered electrical contacts with ultrafine and uniformly dispersed microstructure [J]. Journal of Optoelectronics and Advanced Materials, 2006, 8: 576–581.

    Google Scholar 

  3. BEHRENS V, HONIG T, KRAUS A, et al. An advanced silver/tin oxide contact material [J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 1994, 17(1): 24–31. DOI: https://doi.org/10.1109/95.296364.

    Article  Google Scholar 

  4. BIYIK S. Effect of reinforcement ratio on physical and mechanical properties of Cu-W composites synthesized by ball milling [J]. Materials Focus, 2018, 7(4): 535–541. DOI: https://doi.org/10.1166/mat.2018.1513.

    Article  Google Scholar 

  5. BIYIK S. Effect of cubic and hexagonal boron nitride additions on the synthesis of Ag-SnO2 electrical contact material [J]. Journal of Nanoelectronics and Optoelectronics, 2019, 14(7): 1010–1015. DOI: https://doi.org/10.1166/jno.2019.2592.

    Article  Google Scholar 

  6. BIYIK S, AYDIN M. Fabrication and arc-erosion behavior of Ag8SnO2 electrical contact materials under inductive loads [J]. Acta Physica Polonica A, 2017, 131(3): 339–343. DOI: https://doi.org/10.12693/aphyspola.131.339.

    Article  Google Scholar 

  7. BIYIK S. Characterization of nanocrystalline Cu25Mo electrical contact material synthesized via ball milling [J]. Acta Physica Polonica A, 2017, 132(3-II): 886–888. DOI: https://doi.org/10.12693/aphyspola.132.886.

    Article  Google Scholar 

  8. LIN Zhi-jie, LIU Shao-hong, SUN Xu-dong, et al. The effects of citric acid on the synthesis and performance of silver-tin oxide electrical contact materials [J]. Journal of Alloys and Compounds, 2014, 588: 30–35. DOI: https://doi.org/10.1016/j.jallcom.2013.10.222.

    Article  Google Scholar 

  9. WANG Jing-qin, LIU Zhou, CHEN Ling, et al. Effect of CuF co-doping on the properties of AgSnO2 contact [J]. Materials (Basel, Switzerland), 2019, 12(14): 2315. DOI: https://doi.org/10.3390/ma12142315.

    Article  Google Scholar 

  10. ZHANG Zhi-hao, JIANG Yan-bin, CHEN Yong-tai. Microstructure and deformation mechanism of Ag-12wt% SnO2 composite during hot compression [J]. Journal of Alloys and Compounds, 2017, 728: 719–726. DOI: https://doi.org/10.1016/j.jallcom.2017.09.013.

    Article  Google Scholar 

  11. ZHENG Ji, LI Song-lin, GUO Jing. The influence of rare earth oxide on the structure and properties of AgSnO2 electrical contact materials [J]. Advanced Materials Research, 2012, 479–481: 1986–1989. DOI: https://doi.org/10.4028/www.scientific.net/amr.479-481.1986.

    Article  Google Scholar 

  12. WANG Jing-qin, ZHANG Ying, KANG Hui-ling. Study on properties of AgSnO2contact materials doped with rare earth Y [J]. Materials Research Express, 2018, 5(8): 085902. DOI: https://doi.org/10.1088/2053-1591/aad24b.

    Article  Google Scholar 

  13. ZHENG Ji, LI Song-lin, DOU Fu-qi, et al. Preparation and microstructure characterization of a nano-sized Ti4+-doped AgSnO2 electrical contact material [J]. Rare Metals, 2009, 28(1): 19–23. DOI: https://doi.org/10.1007/s12598-009-0005-7.

    Article  Google Scholar 

  14. ZHOU Xiao-long, CHEN Li, LIU Man-men, et al. Effects of NiO content on the microstructure and mechanical properties of AgSnO2NiO composites [J]. Science and Engineering of Composite Materials, 2019, 26(1): 221–229. DOI: https://doi.org/10.1515/secm-2019-0005.

    Article  Google Scholar 

  15. LI Gui-jing, YANG Tian-yang, MA Yuan-yuan, et al. The effects of oxide additives on the mechanical characteristics of Ag-SnO2 electrical contact materials [J]. Ceramics International, 2020, 46(4): 4897–4906. DOI: https://doi.org/10.1016/j.ceramint.2019.10.226.

    Article  Google Scholar 

  16. WANG Jia-zhen, WANG Ya-ping, YANG Zhi-mao, et al. Effect of CuO additive on the wettability and interface behavior of silver/tin oxide [J]. Rare Metal Materials and Engineering, 2005(3): 405–408. (in Chinese)

  17. WANG Ya-ping, LI Hai-yan. Improved workability of the nanocomposited AgSnO2 contact material and its microstructure control during the arcing process [J]. Metallurgical and Materials Transactions A, 2017, 48(2): 609–616. DOI: https://doi.org/10.1007/s11661-016-3859-y.

    Article  Google Scholar 

  18. WANG Jun, LIU Wei, LI Dong-mei, et al. The behavior and effect of CuO in Ag/SnO2 materials [J]. Journal of Alloys and Compounds, 2014, 588: 378–383. DOI: https://doi.org/10.1016/j.jallcom.2013.11.040.

    Article  Google Scholar 

  19. LIU Song-tao, SUN Qiao-yan, WANG Jun-bo, et al. How Cu doping improves the interfacial wettability between Ag and SnO2 of Ag/SnO2 contact material [J]. Journal of Alloys and Compounds, 2019, 792: 1248–1254. DOI: https://doi.org/10.1016/j.jallcom.2019.04.134.

    Article  Google Scholar 

  20. KAPLAN W D, CHATAIN D, WYNBLATT P, et al. A review of wetting versus adsorption, complexions, and related phenomena: The Rosetta stone of wetting [J]. Journal of Materials Science, 2013, 48(17): 5681–5717. DOI: https://doi.org/10.1007/s10853-013-7462-y.

    Article  Google Scholar 

  21. TUAN W H, LEE S K. Eutectic bonding of copper to ceramics for thermal dissipation applications — A review [J]. Journal of the European Ceramic Society, 2014, 34(16): 4117–4130. DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.07.011.

    Article  Google Scholar 

  22. XU Fu-tai, CHEN Jing-chao, YU Jie, et al. Study on workability and simulation of Ag-SnO2 composites[J]. Precious Metals, 2009, 30(3): 21–25. DOI: https://doi.org/10.3969/j.issn.1004-0676.2009.03.006.

    Google Scholar 

  23. LI Jin-tao, XIONG Ai-hu, ZHANG Xiao, et al. Effect of CuO and SnO2 particle size on hot extrusion deformation of AgCuOSnO2: Finite element simulation and experimental study [J]. Journal of Central South University, 2021, 28(3): 633–647. DOI: https://doi.org/10.1007/s11771-021-4633-x.

    Article  Google Scholar 

  24. LI Gui-jing, MA Yuan-yuan, ZHANG Xiao-long, et al. Interface strengthening and fracture characteristics of the Ag-based contact materials reinforced with nanoporous SnO2 (Cu, CuO) phases [J]. Applied Surface Science, 2021, 543: 148812. DOI: https://doi.org/10.1016/j.apsusc.2020.148812.

    Article  Google Scholar 

  25. MA Yuan-yuan, YANG Tian-yang, FENG Wen-jie, et al. Improved fracture resistance of the Ag/SnO2 contact materials using Cu nanoparticles as additive [J]. Journal of Alloys and Compounds, 2020, 843: 156055. DOI: https://doi.org/10.1016/j.jallcom.2020.156055.

    Article  Google Scholar 

  26. ZHANG J F, ZHANG X X, WANG Q Z, et al. Simulation of anisotropic load transfer and stress distribution in sicp/Al composites subjected to tensile loading [J]. Mechanics of Materials, 2018, 122: 96–103. DOI: https://doi.org/10.1016/j.mechmat.2018.04.011.

    Article  Google Scholar 

  27. WU Qi, XU Wei-xing, ZHANG Liang-chi. Microstructure-based modelling of fracture of particulate reinforced metal matrix composites [J]. Composites Part B: Engineering, 2019, 163: 384–392. DOI: https://doi.org/10.1016/j.compositesb.2018.12.099.

    Article  Google Scholar 

  28. JAGADEESH G V, GANGISETTI S. A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites [J]. Journal of Materials Science, 2020, 55(23): 9848–9882. DOI: https://doi.org/10.1007/s10853-020-04715-2.

    Article  Google Scholar 

  29. ZHANG Jie, OUYANG Qiu-bao, GUO Qiang, et al. 3D Microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites [J]. Composites Science and Technology, 2016, 123: 1–9. DOI: https://doi.org/10.1016/j.compscitech.2015.11.014.

    Article  Google Scholar 

  30. MISHNAEVSKY L L. Three-dimensional numerical testing of microstructures of particle reinforced composites [J]. Acta Materialia, 2004, 52(14): 4177–4188. DOI: https://doi.org/10.1016/j.actamat.2004.05.032.

    Article  Google Scholar 

  31. QING Hai. Automatic generation of 2D micromechanical finite element model automatic generation of 2D micromechanical finite element model [J]. Materials & Design, 2013, 44: 446–453. DOI: https://doi.org/10.1016/j.matdes.2012.08.011.

    Article  Google Scholar 

  32. ZHANG Wan-ting, CHEN Hua-hui, PRENTKI R. Numerical analysis of the mechanical behavior of ZTAp/Fe composites [J]. Computational Materials Science, 2017, 137: 153–161. DOI: https://doi.org/10.1016/j.commatsci.2017.05.021.

    Article  Google Scholar 

  33. YANG X, WU G Q, SHA W, et al. Numerical study of the effects of reinforcement/matrix interphase on stress-strain behavior of YAl2 particle reinforced MgLiAl composites [J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(3): 363–369. DOI: https://doi.org/10.1016/j.compositesa.2011.12.010.

    Article  Google Scholar 

  34. LIU Qing, QI Fu-gong, WANG Qiang, et al. The influence of particles size and its distribution on the degree of stress concentration in particulate reinforced metal matrix composites [J]. Materials Science and Engineering: A, 2018, 731: 351–359. DOI: https://doi.org/10.1016/j.msea.2018.06.067.

    Article  Google Scholar 

  35. GAD S I, ATTIA M A, HASSAN M A, et al. A random microstructure-based model to study the effect of the shape of reinforcement particles on the damage of elastoplastic particulate metal matrix composites [J]. Ceramics International, 2021, 47(3): 3444–3461. DOI: https://doi.org/10.1016/j.ceramint.2020.09.189.

    Article  Google Scholar 

  36. YING Liang, GAO Tian-han, RONG Hai, et al. On the thermal forming limit diagram (TFLD) with GTN mesoscopic damage model for AA7075 aluminum alloy: Numerical and experimental investigation [J]. Journal of Alloys and Compounds, 2019, 802: 675–693. DOI: https://doi.org/10.1016/j.jallcom.2019.05.342.

    Article  Google Scholar 

  37. SHARMA N K, MISHRA R K, SHARMA S. 3D micromechanical analysis of thermo-mechanical behavior of Al2O3/Al metal matrix composites [J]. Computational Materials Science, 2016, 115: 192–201. DOI: https://doi.org/10.1016/j.commatsci.2015.12.051.

    Article  Google Scholar 

  38. MA Yuan-yuan, YANG Tian-yang, LI Gui-jing, et al. Effect of nano-metal additives on the creep behavior of AgSnO2 contact materials [J]. Materials Chemistry and Physics, 2021, 272: 124939. DOI: https://doi.org/10.1016/j.matchemphys.2021.124939.

    Article  Google Scholar 

  39. ZHANG J F, ZHANG X X, WANG Q Z, et al. Simulations of deformation and damage processes of SiCp/Al composites during tension [J]. Journal of Materials Science & Technology, 2018, 34(4): 627–634. DOI: https://doi.org/10.1016/j.jmst.2017.09.005.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-jie Feng  (冯文杰).

Additional information

Foundation item

Projects(11872257, 11572358) supported by the National Natural Science Foundation of China; Project(ZD2018075) supported by the Hebei Provincial Education Department, China

Contributors

MA Yuan-yuan provided the concept and wrote the draft of the manuscript. LI Gui-jing edited the draft of manuscript. FENG Wen-jie analyzed and checked the results. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

The authors declare that they have no conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Yy., Li, Gj. & Feng, Wj. Numerical investigation on interface enhancement mechanism of Ag-SnO2 contact materials with Cu additive. J. Cent. South Univ. 29, 1085–1097 (2022). https://doi.org/10.1007/s11771-022-4981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4981-1

Key words

关键词

Navigation