Skip to main content
Log in

Effect of CuO and SnO2 particle size on hot extrusion deformation of AgCuOSnO2: Finite element simulation and experimental study

CuO 和SnO2 颗粒尺寸对AgCuOSnO2 热挤压变形的影响: 有限元模拟与实验

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The finite element model is established according to the experimental results, and then the experimental results are verified by simulation calculation. In terms of the combination of finite element analysis and experiment, the effect of particle size of CuO and SnO2 on the stress, strain and microstructure of AgCuOSnO2 composite during hot extrusion was studied. The results illustrate that with the decrease of particle size, the dispersion of the second phase increases gradually, while the possibility of “tail shrinkage” of the billet decreases continuously; cubic CuO will evolve to fibrosis, and the degree of fibrosis will increase with the decrease of the particle size and ring clusters. Specifically, the degree of fibrosis at the middle end of the billet is higher than that at the front end, the degree of fibrosis at the front end is higher than that at the back end, and the degree of fibrosis on the surface is higher than that in the core; part of CuO fibers will bend, and the degree of buckling strength is positively correlated with the size of particles and their annular clusters. Additionally, there is fiber CuO in the front and back end of the billet that are inconsistent with the extrusion direction, and the degree of difference was negatively correlated with the particle size.

摘要

根据实验结果建立了有限元模型, 并通过模拟计算验证实验结果。通过有限元分析和实验相结 合, 研究了不同颗粒尺寸的CuO 和SnO2 在热挤压过程中, 对AgCuOSnO2 复合材料的应力、应变和 微观组织的影响。结果表明, 随着颗粒尺寸的减小, 第二相的分散性逐渐增加, 而坯料发生“缩尾”的 可能性则不断下降。立方CuO 将向纤维化演变, 其纤维化程度随着颗粒及其环状团簇尺寸的减小而 增加, 具体为坯料中端大于前端, 前端又大于后端, 表层强于芯部。CuO 纤维将发生弯曲, 屈曲度则 与颗粒及其环状团簇尺寸呈正相关。此外, 坯料前端和后端存在与挤压方向不一致的纤维CuO, 差异 程度与颗粒大小呈负相关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JIANG Yi-bin, FENG Peng-fei, HUANG Xing-long, LI Zhen-peng. Research status of AgSnO2In2O3 electrical contact materials by internal oxidation [J]. Electrical Engineering Materials, 2017(2): 30–34. DOI: https://doi.org/10.16786/j.cnki.1671-8887.eem.2017.02.008. (in Chinese)

  2. ZHOU Xiao-long, XIONG Ai-hu, LIU Man-men, ZHENG Zhong, YU Jie, WANG Li-hui. Electrical contact properties of AgSnO2NiO electrical contact material [J]. Rare Metal Materials and Engineering, 2019, 48(9): 2885–2892. (in Chinese)

    Google Scholar 

  3. WANG Hai-tao, WANG Lian-zheng, WANG Jing-qin, ZHU Yan-cai. Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO2 contact materials [J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(11): 1275–1285. DOI: https://doi.org/10.1007/s12613-018-1680-x.

    Article  Google Scholar 

  4. WANG Xin-jian, RUAN Wen-kui, WANG Yang, YU Lei. Structure and properties of internal oxidized AgCuONiO electrical contact materials applied to micro-motor commutator [J]. Electrical Engineering Materials, 2013(1): 16–19. DOI: https://doi.org/10.16786/j.cnki.1671-8887.eem.2013.01.003. (in Chinese)

  5. XIA Jing, XIANG Xiong-zhi, HU Xu-gao, BAO Xiao-jun. Mechanism of internal oxidation in Ag-Cu alloy [J]. Hot Working Technology, 2014, 43(16): 62–68. DOI: https://doi.org/10.14158/j.cnki.1001-3814.2014.16.020. (in Chinese)

    Google Scholar 

  6. CAO Guan-yu, ZHANG Yun, LIU Jing-shun, NAN Ding, LIU Hui-min. Contrastive research on electrical contact performance for contact materials of Cu-SnO2 and Cu-ZnO2 alloys [J]. Materials Research, 2019, 22(3): e20180901. DOI: https://doi.org/10.1590/1980-5373-mr-2018-0901.

    Article  Google Scholar 

  7. WANG Song, CHEN Yong-tai, YANG You-cai, ZHANG Ji-ming, LIU Man-men, WANG Sai-bei. A review on the development of AgSnO2 electrical contact material [J]. Precious Metals, 2013, 34(S1): 102–107. (in Chinese)

    Google Scholar 

  8. LUNGU M, GAVRILIU S, CANTA T, LUCACI M, ENESCU E. AgSnO2 sintered electrical contacts with ultrafine and uniformly dispersed microstructure [J]. Journal of Optoelectronics & Advanced Materials, 2006, 8(2): 576–581. DOI: https://doi.org/10.1088/1464-4258/8/4/S01.

    Google Scholar 

  9. WANG Zhao-bin, LI Wei-yan, SHANG Shang, WANG Zhan, HAN Chun-yang. Performance degradation comparisons and failure mechanism of silver metal oxide contact materials in relays application by simulation [J]. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 2019, 22(1): 86–93. DOI: https://doi.org/10.17531/ein.2020.1.10.

    Article  Google Scholar 

  10. ZOZ H, REN H, SPÄTH N. Improved Ag-SnO2 electrical contact material produced by mechanical alloying [J]. Zoz Gmbh, 1999, 53: 423–436.

    Google Scholar 

  11. WANG Song, ZHENG Ting-ting, XIE Ming, WANG Ya-xiong, ZHANG Ji-ming. Internal oxidation thermodynamics and isothermal oxidation behavior of AgSnO2 electrical contact materials [J]. Rare Metal Materials and Engineering, 2014, 43(4): 796–798. DOI: https://doi.org/10.1016/S1875-5372(14)60086-2.

    Article  Google Scholar 

  12. WU Chun-ping, ZHAO Qian, LI Na-na, WANG Hai-sheng, YI Dan-qing, WENG Wei. Influence of fabrication technology on arc erosion of Ag/10SnO2 electrical contact materials [J]. Journal of Alloys and Compounds, 2018, 766: 161–177. DOI: https://doi.org/10.1016/j.jallcom.2018.06.317.

    Article  Google Scholar 

  13. LI Zheng-zhou, NAI Qi-liang, WANG Bao-shun, SU Cheng, YANG Liang, DAI Jian-xin. Influence of hot extrusion process on microstructure and control for 690 alloy [J]. Rare Metal Materials and Engineering, 2018, 47(12): 3776–3783. (in Chinese)

    Google Scholar 

  14. SHINO S, TOKO T, MUNEKAZU O, MATSUURA K. Microstructure refinement and mechanical properties improvement of Al-Si-Fe alloys by hot extrusion using a specially designed high-strain die [J]. Journal of Materials Processing Technology, 2020, 277: 116447. DOI: https://doi.org/10.1016/j.jmatprotec.2019.116447.

    Article  Google Scholar 

  15. DHANALAKSHMI S, SIVAKUMAR P, SHANMUGA K S, ANAND S. Finite element analysis and experimental study on the effect of extrusion ratio during hot extrusion process of aluminium matrix composites [J]. Defence Science Journal, 2017, 67(4): 11535. DOI: https://doi.org/10.14429/dsj.67.11535.

    Google Scholar 

  16. SHEIKHOLESLAMI M, ROKNI H B. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation [J]. International Journal of Heat and Mass Transfer, 2018, 118: 823–831. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.041.

    Article  Google Scholar 

  17. GAILLAC A, BARBERIS P. Numerical modeling of zirconium alloys hot extrusion [C]//18th International Symposium on Zirconium in the Nuclear Industry. 2018: 127–150.

  18. ZHOU Xiao-long, CAO Jian-chun, CHEN Jing-chao, LI Jing-tao, YU Jie, ZHANG Kun-hua, DU Yan. Growth kinetics analysis of CuO in reactive synthesis AgCuO composites [J]. Journal of University of Science and Technology Beijing, 2010, 32(10): 1311–1315. (in Chinese)

    Google Scholar 

  19. TANNÉ E, LI T, BOURDIN B, MARIGO J J, MAURINI C. Crack nucleation in variational phase-field models of brittle fracture [J]. Journal of the Mechanics and Physics of Solids, 2018, 110: 80–99. DOI: https://doi.org/10.1016/j.jmps.2017.09.006.

    Article  MathSciNet  Google Scholar 

  20. NING Yuan-tao, ZHAO Huai-zhi. Silver in nano-materials [M]. Changsha: Central South Uiversity Press, 2003. (in Chinese)

    Google Scholar 

  21. ZHENG Zhong, ZHOU Xiao-long, ZHOU Yun-hong, YU Jie, ZHOU Zhao-bo, CAO Han-xing, HU Ri-ming. Study on cubic copper oxide in Ag/CuO composites prepared by in-situ reaction [J]. Journal of Synthetic Crystals, 2016, 45(5): 1276–1281. (in Chinese)

    Google Scholar 

  22. CLARY D R, MILLS G. Preparation and thermal properties of CuO particles [J]. J Phys Chemc, 2011, 115(5): 1767–1775. DOI: https://doi.org/10.1021/jp110102r.

    Google Scholar 

  23. LIU Man-men, YU Jie, CHEN Jing-chao, ZHOU Xiao-long, RUAN Jin, XU Fu-tai. Finite element simulation of extrusion process of Ag/SnO2 composite by reactive synthesis [J]. Rare Metal Materials and Engineering, 2010, 39(3): 410–413. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-long Zhou  (周晓龙).

Additional information

Foundation item

Project(2017FA027) supported by the Key Project of Science and Technology of Yunnan Province, China

Contributors

LI Jin-tao and XIONG Ai-hu provided the concept and edited the draft of manuscript. ZHOU Xiao-long conducted the literature review. LI Jin-tao, XIONG Ai-hu, ZHANG Xiao, HU Chen, LIU Man-men, WANG Li-hui and ZHOU Xiao-long replied to reviewers’ comments and revised the final version.

Conflict of interest

LI Jin-tao, XIONG Ai-hu, ZHANG Xiao, HU Chen, LIU Man-men, WANG Li-hui and ZHOU Xiao-long declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jt., Xiong, Ah., Zhang, X. et al. Effect of CuO and SnO2 particle size on hot extrusion deformation of AgCuOSnO2: Finite element simulation and experimental study. J. Cent. South Univ. 28, 633–647 (2021). https://doi.org/10.1007/s11771-021-4633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4633-x

Key words

关键词

Navigation