Skip to main content
Log in

Image denoising based on the fractional-order total variation and the minimax-concave

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The total variation model has attracted considerable attention for its good balance of noise reduction and edge maintenance, but it produces blocky effects. In this paper, a novel model for noise reduction and staircase effects elimination was proposed for images polluted by the additive white Gaussian noise, which is based on fractional-order differentiation. The new non-convex regularization term can express as the minimax-concave penalty of the fractional-order total variation (FOTV) term. The FOTV term can suppress staircase effects while preserving small-scale edges and textures information well. The non-convex regularizer can estimate the edge more accurately than the convex regularizer. We set the non-convexity parameter and the regularization parameter in the appropriate range to maintain the convexity of the proposed objective function. To effectively solve the new model, we use the alternating direction method of multipliers to minimize the objective function. Experimental results illustrate that the new model performs better than other models and yields clearer denoised images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Li, F., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Represent. 18(4), 322–330 (2007). https://doi.org/10.1016/j.jvcir.2007.04.005

    Article  CAS  Google Scholar 

  2. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenomena 60(1), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  ADS  MathSciNet  Google Scholar 

  3. Wang, Y., Wang, Z.: Image denoising method based on variable exponential fractional-integer-order total variation and tight frame sparse regularization. IET Image Process. 15(1), 101–114 (2021)

    Article  Google Scholar 

  4. Kazemi Golbaghi, F., Eslahchi, M., Rezghi, M.: Image denoising by a novel variable-order total fractional variation model. Math. Methods Appl. Sci. 44(8), 7250–7261 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  5. You, Y.-L., Kaveh, M.: Fourth-order partial differential equations for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000). https://doi.org/10.1109/83.869184

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  6. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010). https://doi.org/10.1137/090769521

    Article  MathSciNet  Google Scholar 

  7. Liu, J., Huang, T.-Z., Selesnick, I.W., Lv, X.-G., Chen, P.-Y.: Image restoration using total variation with overlapping group sparsity. Inf. Sci. 295, 232–246 (2015). https://doi.org/10.1016/j.ins.2014.10.041

    Article  MathSciNet  Google Scholar 

  8. Hacini, M., Hachouf, F., Charef, A.: A bi-directional fractional-order derivative mask for image processing applications. IET Image Process. 14(11), 2512–2524 (2020)

    Article  Google Scholar 

  9. Bai, J., Feng, X.-C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007). https://doi.org/10.1109/TIP.2007.904971

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  10. Lanza, A., Morigi, S., Sgallari, F.: Convex image denoising via non-convex regularization with parameter selection. J. Math. Imaging Vis. 56, 195–220 (2016)

    Article  MathSciNet  Google Scholar 

  11. Selesnick, I.: Total variation denoising via the Moreau envelope. IEEE Signal Process. Lett. 24(2), 216–220 (2017). https://doi.org/10.1109/LSP.2017.2647948

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhou, M., Zhao, P.: Enhanced total generalized variation method based on Moreau envelope. Multimed. Tools Appl. 80, 19539–19566 (2021)

    Article  Google Scholar 

  13. Selesnick, I., Lanza, A., Morigi, S., Sgallari, F.: Non-convex total variation regularization for convex denoising of signals. J. Math. Imaging Vis. 62(6–7), 825–841 (2020)

    Article  MathSciNet  Google Scholar 

  14. Du, H., Liu, Y.: Minmax-concave total variation denoising. Signal Image Video Process. 12, 1027–1034 (2018)

    Article  Google Scholar 

  15. Ji, M., Zhao, P.: Image restoration based on the minimax-concave and the overlapping group sparsity. Signal Image Video Process. 17(4), 1733–1741 (2022)

    Article  Google Scholar 

  16. Zhang, C.-H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010). https://doi.org/10.1214/09-AOS729

    Article  MathSciNet  Google Scholar 

  17. Yu, Y., Peng, J.: The Moreau envelope based efficient first-order methods for sparse recovery. J. Comput. Appl. Math. 322, 109–128 (2017)

    Article  MathSciNet  Google Scholar 

  18. Wang, Q., Ma, J., Yu, S., Tan, L.: Noise detection and image denoising based on fractional calculus. Chaos Solitons Fractals 131, 109463 (2020). https://doi.org/10.1016/j.chaos.2019.109463

    Article  MathSciNet  Google Scholar 

  19. Li, D., Jiang, T., Jin, Q., Zhang, B.: Adaptive fractional order total variation image denoising via the alternating direction method of multipliers. In: 2020 Chinese Control And Decision Conference (CCDC), pp. 3876–3881 (2020). https://doi.org/10.1109/CCDC49329.2020.9164418

  20. Dong, F., Chen, Y.: A fractional-order derivative based variational framework for image denoising. Inverse Problems Imaging 10(1) (2016)

  21. Zhang, J., Wei, Z., Xiao, L.: Adaptive fractional-order multi-scale method for image denoising. J. Math. Imaging Vis. 43, 39–49 (2012)

    Article  MathSciNet  Google Scholar 

  22. Rahman Chowdhury, M., Zhang, J., Qin, J., Lou, Y.: Poisson image denoising based on fractional-order total variation. Inverse Probl. Imaging 14(1), 77–96 (2020)

    Article  MathSciNet  Google Scholar 

  23. Ito, K., Kunisch, K.: Augmented Lagrangian methods for Nonsmooth, convex optimization in Hilbert spaces. Nonlinear Anal. Theory Methods Appl. 41(5), 591–616 (2000). https://doi.org/10.1016/S0362-546X(98)00299-5

    Article  MathSciNet  Google Scholar 

  24. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008). https://doi.org/10.1137/080724265

    Article  MathSciNet  Google Scholar 

  25. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2017)

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  ADS  PubMed  Google Scholar 

  27. He, C., Hu, C., Zhang, W., Shi, B.: A fast adaptive parameter estimation for total variation image restoration. IEEE Trans. Image Process. 23(12), 4954–4967 (2014). https://doi.org/10.1109/TIP.2014.2360133

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  28. Che, J., Guan, Q., Wang, X.: Image denoising based on adaptive fractional partial differential equations. In: 2013 6th International Congress on Image and Signal Processing (CISP), vol. 01, pp. 288–292 (2013). https://doi.org/10.1109/CISP.2013.6744004

  29. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  ADS  PubMed  Google Scholar 

  30. Yang, S., Wang, J., Fan, W., Zhang, X., Wonka, P., Ye, J.: An efficient admm algorithm for multidimensional anisotropic total variation regularization problems. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’13, pp. 641–649. Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2487575.2487586

Download references

Funding

No funding was received for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XC; Methodology: XC; Formal analysis and investigation: XC; Writing - original draft preparation: XC; Writing - review and editing: XC, PZ; Supervision: PZ. All authors discussed the results and contributed to the final manuscript

Corresponding author

Correspondence to Xiaohui Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhao, P. Image denoising based on the fractional-order total variation and the minimax-concave. SIViP 18, 1601–1608 (2024). https://doi.org/10.1007/s11760-023-02876-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-023-02876-6

Keywords

Navigation