Skip to main content
Log in

A denoising model based on the fractional Beltrami regularization and its numerical solution

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In image processing, the regularization term is always hard to choose. In this paper, we introduce a model based on the fractional derivative, which is derived from the classical Beltrami model. The proposed regularization term offers an ideal compromise between feature preservation, avoidance of staircasing and the loss of image contrasts. This model can outperform the high order regularization models and also the total fractional-order variation model. Also, we rigorously analyse the theoretical properties of the fractional derivative and show the existence and uniqueness of the proposed minimization problem in a suitable functional framework. In addition, to solve the variational problem, we consider the primal-dual projected gradient algorithm. Numerical experiments show that the proposed model produces competitive results compared to some classical regularizations, especially, it avoids the staircase effect and preserves edges and features of the image while reducing noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Prob. 10(6), 1217 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Tikhonov, A.N., Arsenin, V.Y.: Methods for solving ill-posed problems. Wiley (1977)

  3. Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor. 40(24), 6287 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Alahyane, M., Hakim, A., Laghrib, A., Raghay, S.: Fluid image registration using a finite volume scheme of the incompressible Navier Stokes equation. Inverse Probl. Imaging 12(5), 1055–1081 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, vol. 254. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  6. Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R.: On the Laplace–Beltrami operator and brain surface flattening. IEEE Trans. Med. Imaging 18(8), 700–711 (1999)

    Google Scholar 

  7. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, vol. 17. SIAM, Philadelphia (2014)

    MATH  Google Scholar 

  8. Aujol, J.-F.: Some first-order algorithms for total variation based image restoration. J. Math. Imaging Vis. 34(3), 307–327 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Bai, J., Feng, X.-C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007)

    MathSciNet  Google Scholar 

  10. Bai, J., Feng, X.-C.: Image denoising using generalized anisotropic diffusion. J. Math. Imaging Vis. 60, 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Bergmann, R., Weinmann, A.: A second-order tv-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data. J. Math. Imaging Vis. 55(3), 401–427 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Co. (2000)

  13. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Cai, J.-F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Carbone, L., De Arcangelis, R.: Unbounded Functionals in the Calculus of Variations: Representation, Relaxation, and Homogenization. Chapman and Hall, London (2001)

    MATH  Google Scholar 

  16. Chang, Q., Chern, I-Liang.: Acceleration methods for total variation-based image denoising. SIAM. J. Sci. Comput 25(3), 982–994 (2003)

  17. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Chan, T. F., Esedoglu, S., Park, F.: A fourth order dual method for staircase reduction in texture extraction and image restoration problems. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 4137–4140. IEEE (2010)

  21. Chen, D., Chen, Y., Xue, D.: Fractional-order total variation image restoration based on primal-dual algorithm. In: Abstract and Applied Analysis, vol. 2013. Hindawi (2013)

  22. Chen, D., Sun, S., Zhang, C., Chen, Y., Xue, D.: Fractional-order tv-l 2 model for image denoising. Cent. Eur. J. Phys. 11(10), 1414–1422 (2013)

    Google Scholar 

  23. Demengel, F., Temam, R.: Convex-functions of a measure and applications. Indiana Univ. Math. J. 33(5), 673–709 (1984)

    MathSciNet  MATH  Google Scholar 

  24. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Evans, L.: Measure Theory and Fine Properties of Functions. Routledge, London (2018)

    Google Scholar 

  26. Frohn-Schauf, C., Henn, S., Witsch, K.: Multigrid based total variation image registration. Comput. Vis. Sci. 11(2), 101–113 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Goldstein, T., Osher, S.: The split Bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Govan, A.: Introduction to optimization. In: North Carolina State University, SAMSI NDHS, Undergraduate Workshop (2006)

  29. Guidotti, P.: A new nonlocal nonlinear diffusion of image processing. J. Differ. Equ. 246(12), 4731–4742 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Guidotti, P., Lambers, J.V.: Two new nonlinear nonlocal diffusions for noise reduction. J. Math. Imaging Vis. 33(1), 25–37 (2009)

    MathSciNet  Google Scholar 

  31. Hadri, A., Khalfi, H., Laghrib, A., Nachaoui, M.: An improved spatially controlled reaction-diffusion equation with a non-linear second order operator for image super-resolution. Nonlinear Anal. Real World Appl. 62, 103352 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Hakim, M., Ghazdali, A., Laghrib, A.: A multi-frame super-resolution based on new variational data fidelity term. Appl. Math. Model. 87, 446–467 (2020)

    MathSciNet  MATH  Google Scholar 

  33. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Janev, M., Pilipović, S., Atanacković, T., Obradović, R., Ralević, N.: Fully fractional anisotropic diffusion for image denoising. Math. Comput. Model. 54(1–2), 729–741 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Laghrib, A., Afraites, L., Hadri, A., Nachaoui, M.: A non-convex PDE-constrained denoising model for impulse and gaussian noise mixture reduction. Inverse Probl. Imaging (2022)

  36. Laghrib, A., Alahyane, M., Ghazdali, A., Hakim, A., Raghay, S.: Multiframe super-resolution based on a high-order spatially weighted regularisation. IET Image Proc. 12(6), 928–940 (2018)

    Google Scholar 

  37. Laghrib, A., Chakib, A., Hadri, A., Hakim, A.: A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete Contin. Dyn. Syst.-B 25(1), 415 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Laghrib, A., Ezzaki, M., El Rhabi, M., Hakim, A., Monasse, P., Raghay, S.: Simultaneous deconvolution and denoising using a second order variational approach applied to image super resolution. Comput. Vis. Image Underst. 168, 50–63 (2018)

    Google Scholar 

  39. Laghrib, A., Ghazdali, A., Hakim, A., Raghay, S.: A multi-frame super-resolution using diffusion registration and a nonlocal variational image restoration. Comput. Math. Appl. 72(9), 2535–2548 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    MATH  Google Scholar 

  41. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  43. Papafitsoros, K., Schönlieb, C.-B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48(2), 308–338 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  45. Poschl, C., Scherzer, O.: Characterization of minimizers of convex regularization functionals. Contemp. Math. 451, 219–248 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Rosman, G., Dascal, L., Tai, X.-C., Kimmel, R.: On semi-implicit splitting schemes for the Beltrami color image filtering. J. Math. Imaging Vis. 40(2), 199–213 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    MathSciNet  MATH  Google Scholar 

  48. Shen, J., Kang, S.H., Chan, T.F.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63(2), 564–592 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Shor, N.Z.: Minimization Methods for Non-differentiable Functions, vol. 3. Springer, Berlin (2012)

    Google Scholar 

  50. Valkonen, T., Bredies, K., Knoll, F.: Total generalized variation in diffusion tensor imaging. SIAM J. Imaging Sci. 6(1), 487–525 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Vese, L.A., Osher, S.J.: Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vis. 20(1–2), 7–18 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, D., Chen, K.: A novel diffeomorphic model for image registration and its algorithm. J. Math. Imaging Vis. 60, 1261–1283 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 8(4), 2487–2518 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, J., Wei, Z., Xiao, L.: Adaptive fractional-order multi-scale method for image denoising. J. Math. Imaging Vis. 43(1), 39–49 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Zosso, D., Bustin, A.: A primal-dual projected gradient algorithm for efficient Beltrami regularization. Comput. Vis. Image Underst. pp. 14–52 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anouar Ben-Loghfyry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Loghfyry, A., Hakim, A. & Laghrib, A. A denoising model based on the fractional Beltrami regularization and its numerical solution. J. Appl. Math. Comput. 69, 1431–1463 (2023). https://doi.org/10.1007/s12190-022-01798-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01798-9

Keywords

Mathematics Subject Classification

Navigation