Skip to main content
Log in

Use of Phagotrophic Microalga Ochromonas danica to Pretreat Waste Cooking Oil for Biodiesel Production

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

In this study, the feasibility of pretreatment and/or upgrading of waste cooking oil (WCO) using the microalga Ochromonas danica was investigated. Two WCO samples with initial acid values (AV) of 10.7 mg KOH/g (~5.4 % FFA content) and 3.9 mg KOH/g (~2.0 % FFA content) were examined. The algal cells engulfed oil droplets and grew rapidly on both WCO samples. The cell growth rates on WCO were compared with the rates on olive oil, with or without surfactant addition to make the oil droplets smaller and easier for algal ingestion. Comparison was also made with the growth rate in a sugar-based medium. More importantly, contacting the WCO with the phagotrophic O. danica cells was found to decrease the acid values of the remaining oil by 2.8 and 2.4 mg KOH/g WCO, respectively. The O. danica-pretreated WCO, with lower acid values, are potentially better feedstock for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190

    Article  CAS  Google Scholar 

  2. Felizardo P, Neiva Correia MJ, Raposo I, Mendes JF, Berkemeier R et al (2006) Production of biodiesel from waste frying oils. Waste Manage 26:487–494

    Article  CAS  Google Scholar 

  3. Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87:3490–3496

    Article  CAS  Google Scholar 

  4. Meher L, Vidya Sagar D, Naik S (2006) Technical aspects of biodiesel production by transesterification–a review. Renew Sustain Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  5. Canakci M, Van Gerpen J (2001) Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 44:1429–1436

    Article  CAS  Google Scholar 

  6. Refaat AA (2010) Different techniques for the production of biodiesel from waste vegetable oil. Int J Environ Sci Technol 7:183–213

    Article  CAS  Google Scholar 

  7. Leung DYC, Guo Y (2006) Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technol 87:883–890

    Article  CAS  Google Scholar 

  8. Meher LC, Dharmagadda VSS, Naik SN (2006) Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour Technol 97:1392–1397

    Article  CAS  Google Scholar 

  9. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  Google Scholar 

  10. Raj MT, Kandasamy MKK (2012) Tamanu oil-an alternative fuel for variable compression ratio engine. Int J Energy Environ Eng 3:18. doi:10.1186/2251-6832-3-18

    Article  Google Scholar 

  11. Dorado MP, Ballesteros E, De Almeida JA, Schellert C, Löhrlein HP et al (2002) An alkali-catalyzed transesterification process for high free fatty acid waste oils. Trans ASAE 45:525–529

    CAS  Google Scholar 

  12. El-Mashad HM, Zhang R, Avena-Bustillos RJ (2008) A two-step process for biodiesel production from salmon oil. Biosyst Eng 99:220–227

    Article  Google Scholar 

  13. Ghadge S, Raheman H (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy 28:601–605

    Article  CAS  Google Scholar 

  14. Kumar Tiwari A, Kumar A, Raheman H (2007) Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31:569–575

    Article  CAS  Google Scholar 

  15. Freedman B, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:1638–1643

    Article  CAS  Google Scholar 

  16. Liu KS (1994) Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. J Am Oil Chem Soc 71:1179–1187

    Article  CAS  Google Scholar 

  17. Nelson LA, Foglia TA, Marmer WN (1996) Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 73:1191–1195

    Article  CAS  Google Scholar 

  18. Turkay S, Civelekoglu H (1991) Deacidification of sulfur olive oil. I. Single-stage liquid–liquid extraction of miscella with ethyl alcohol. J Am Oil Chem Soc 68:83–86

    Article  CAS  Google Scholar 

  19. Canakci M, Van Gerpen J (2003) A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans ASAE 46:945–954

    CAS  Google Scholar 

  20. Vasudevan PT, Briggs M (2008) Biodiesel production—current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430

    Article  CAS  Google Scholar 

  21. Dias JM, Alvim-Ferraz M, Almeida MF (2008) Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel 87:3572–3578

    Article  CAS  Google Scholar 

  22. Soriano NUJ, Venditti R, Argyropoulos DS (2009) Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel 88:560–565

    Article  CAS  Google Scholar 

  23. Siler-Marinkovic S, Tomasevic A (1998) Transesterification of sunflower oil in situ. Fuel 77:1389–1391

    Article  CAS  Google Scholar 

  24. Harrington KJ, D’Arcy-Evans C (1985) Transesterification in situ of sunflower seed oil. Ind Eng Chem Prod Res Dev 24:314–318

    Article  CAS  Google Scholar 

  25. Bouck GB (1971) The structure, origin, isolation, and composition of the tubular mastigonemes of the Ochromonas flagellum. J Cell Biol 50:362–384

    Article  CAS  Google Scholar 

  26. Gibbs SP, Cheng D, Slankis T (1974) The chloroplast nucleoid in Ochromonas danica. J Cell Sci 16:557–577

    CAS  Google Scholar 

  27. Bouck GB, Brown DL (1973) Microtubule biogenesis and cell shape in Ochromonas. J Cell Biol 56:340–350

    Article  CAS  Google Scholar 

  28. Pringsheim EG (1952) On the nutrition of Ochromonas. Q J Microsc Sci 3:71–96

    Google Scholar 

  29. Pringsheim E (1955) Über Ochromonas danica n. sp. und andere Arten der Gattung. Arch Microbiol 23:181–192

    CAS  Google Scholar 

  30. Jüttner F, Friz R (1974) Excretion products of Ochromonas with special reference to pyrrolidone carboxylic acid. Arch Microbiol 96:223–232

    Article  Google Scholar 

  31. Aaronson S, Baker H (1959) A comparative biochemical study of two species of Ochromonas. J Eukaryotic Microbiol 6:282–284

    CAS  Google Scholar 

  32. Aaronson S (1974) The biology and ultrastructure of phagotrophy in Ochromonas danica (Chrysophyceae: Chrysomdnadida). Microbiol 83:21–29

    Google Scholar 

  33. Aaronson S (1973) Particle aggregation and phagotrophy by Ochromonas. Arch Microbiol 92:39–44

    CAS  Google Scholar 

  34. Daley RJ, Morris GP, Brown SR (1973) Phagotrophic ingestion of a blue-green alga by Ochromonas. J Eukaryot Microbiol 20:58–61

    Google Scholar 

  35. Semple KT, Cain RB (1997) Degradation of phenol and its methylated homologues by Ochromonas danica. FEMS Microbiol Lett 152:133–139

    Article  CAS  Google Scholar 

  36. Semple KT (1998) Heterotrophic growth on phenolic mixtures by Ochromonas danica. Res Microbiol 149:65–72

    Article  CAS  Google Scholar 

  37. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  38. AOCS (1988) Acid value, Cd 3a-63. In: Official methods and recommended practices of the American Oil Chemists’ Society, 3rd edn. AOCS Press, Champaign

  39. Simonds S, Grover JP, Chrzanowski TH (2010) Element content of Ochromonas danica: a replicated chemostat study controlling the growth rate and temperature. FEMS Microbiol Ecol 74:346–352

    Article  CAS  Google Scholar 

  40. Semple KT (1994) The biodegradation of phenols by a eukaryotic alga. PhD thesis, University of Newcastle upon Tyne

Download references

Acknowledgments

This work was supported by the Ohio Water Development Authority (grant number 5300). The authors thank Dr. Donald Ott (Department of Biology, The University of Akron) for assistance in microscopic examination and acknowledge the contribution of Dr. Qin Zhang and Mr. Jacob Kohl in establishing some of the experimental procedures in preliminary experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Kwang Ju.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Ju, LK. Use of Phagotrophic Microalga Ochromonas danica to Pretreat Waste Cooking Oil for Biodiesel Production. J Am Oil Chem Soc 92, 29–35 (2015). https://doi.org/10.1007/s11746-014-2578-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2578-z

Keywords

Navigation