Skip to main content
Log in

Different techniques for the production of biodiesel from waste vegetable oil

  • Review Paper
  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The production of biodiesel from waste vegetable oil offers a triple-facet solution: economic, environmental and waste management. The new process technologies developed during the last years made it possible to produce biodiesel from recycled frying oils comparable in quality to that of virgin vegetable oil biodiesel with an added attractive advantage of being lower in price. Thus, biodiesel produced from recycled frying oils has the same possibilities to be utilized. While transesterification is well-established and becoming increasingly important, there remains considerable inefficiencies in existing transesterification processes. There is an imperative need to improve the existing biodiesel production methods from both economic and environmental viewpoints and to investigate alternative and innovative production processes. This study highlights the main changes occurring in the oil during frying in order to identify the characteristics of oil after frying and the anticipated effects of the products formed in the frying process on biodiesel quality and attempts to review the different techniques used in the production of biodiesel from recycled oils, stressing the advantages and limitations of each technique and the optimization conditions for each process. The emerging technologies which can be utilized in this field are also investigated. The quality of biodiesel produced from waste vegetable oil in previous studies is also reviewed and the performance of engines fueled with this biodiesel and the characteristics of the exhaust emissions resulting from it are highlighted. The overarching goal is to stimulate further activities in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, D.; Agarwal, A. K., (2007). Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl. Therm. Eng., 27 (13), 2314–2323 (10 pages).

    Article  CAS  Google Scholar 

  • Akoh, C. C.; Chang, S. W.; Lee, G. C.; Shaw, J. F., (2007). Enzymatic approach to biodiesel production. J. Agr. Food Chem., 55 (22), 8995–9005 (11 pages).

    Article  CAS  Google Scholar 

  • Alcantara, R.; Amores, J.; Canoira, L.; Fidalgo, E.; Franco, M. J.; Navarro, A., (2000). Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenerg., 18 (6), 515–527 (3 pages).

    Article  CAS  Google Scholar 

  • Al-Widyan, M. I.; Al-Shyoukh, A. O., (2002). Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour. Tech., 85 (3), 253–256 (4 pages).

    Article  CAS  Google Scholar 

  • Antczak, M. S.; Kubiak, A.; Antczak, T.; Bielecki, S., (2009). Enzymatic biodiesel synthesis — Key factors affecting efficiency of the process. Renew. Energ., 34 (5), 1185–1194 (10 pages).

    Article  CAS  Google Scholar 

  • Barnard, T. M.; Leadbeater, N. E.; Boucher, M. B.; Stencel, L. M.; Wilhite, B. A., (2007). Continuous-Flow preparation of biodiesel using microwave heating. Energ. Fuel., 21 (3), 1777–1781 (10 pages).

    Article  CAS  Google Scholar 

  • Bournay, L.; Casanave, D.; Elfort, B.; Hillion, G.; Chodorge, J. A., (2005). New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal. Today, 106 (1–4), 190–192 (3 pages).

    Article  CAS  Google Scholar 

  • Canakci, M., (2007). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour. Tech., 98 (1), 183–190 (8 pages).

    Article  CAS  Google Scholar 

  • Canakci, M.; van Gerpen, J. H., (2001). A pilot plant to produce biodiesel from high free fatty acid feedstocks. American Society of Agricultural Engineers, ASAE Annual International Meeting, Sacramento, California, USA, July 30-August 1, 2001, Paper Number: 016049.

    Google Scholar 

  • Cao, F.; Chen, Y.; Zhai, F.; Li, J.; Wang, J.; Wang, X.; Wang, S.; Zhu, W., (2008). Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotech. Bioengin., 101 (1), 93–100 (8 pages).

    Article  CAS  Google Scholar 

  • Cao, W. L.; Han, H. W.; Zhang, J. C., (2005). Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel, 84 (4), 347–351 (5 pages).

    Article  CAS  Google Scholar 

  • Cardone, M.; Prati, M. V.; Rocco, V.; Seggiani, M.; Senatore, A.; Vitolo, S., (2002). Brassica carinata as an Alternative Oil Crop for the Production of Biodiesel in Italy: Engine Performance and Regulated and Unregulated Exhaust Emissions. Environ. Sci. Tech., 36 (21), 4656–4662 (7 pages).

    Article  CAS  Google Scholar 

  • Cayli, G; Küsefoglu, S., (2008). Increased yields in biodiesel production from used cooking oils by a two step process: Comparison with one step process by using TGA. Fuel Proc. Tech., 89 (2), 118–122 (5 pages).

    Article  CAS  Google Scholar 

  • Cerveró, J. M.; Coca, J.; Luque, S., (2008). Production of biodiesel from vegetable oils. Grasas Y Aceites. Int. J. Fata Oils, 59 (1), 76–83 (8 pages).

    Google Scholar 

  • Chai, F.; Cao, F.; Zhai, F.; Chen, Y, Wang, X.; Su, Z., (2007). Transesterification of vegetable oil to biodiesel using heteropolyacid solid catalyst. Adv. Synth. Catal., 349 (7), 1057–1065 (8 pages).

    Article  CAS  Google Scholar 

  • Chen, G.; Ying, M.; Li, W., (2006). Enzymatic conversion of waste cooking oils into alternative fuel — Biodiesel. Appl. Biochem. Biotech., 132 (1–3), 911–921 (11 pages).

    Article  Google Scholar 

  • Chhetri, A. B.; Watts, K. C.; Islam, M. R., (2008). Waste cooking oil as an alternate feedstock for biodiesel production. Energies, 1 (1), 3–18 (16 pages).

    Article  CAS  Google Scholar 

  • Colucci, J. A.; Borrero, E. E.; Alape, F., (2005). Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. J. Am. Oil Chem. Soc, 82 (7), 525–530 (6 pages).

    Article  CAS  Google Scholar 

  • Cvengros, J. J.; Cvengrosová, Z., (2004). Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass Bioenerg., 27 (2), 173–181 (9 pages).

    Article  CAS  Google Scholar 

  • De Paola, M. G; Ricca, E.; Calabro, V.; Curcio, S.; Iorio, G (2009). Factor analysis of transesterification reaction of waste oil for biodiesel production. Bioresour. Tech., 100 (21), 5126–5131 (6 pages).

    Article  CAS  Google Scholar 

  • Demirbas, A., (2007). Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energ. Convers. Manage., 48 (3), 937–941 (5 pages).

    Article  CAS  Google Scholar 

  • Demirbas, A., (2009). Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energ. Convers. Manage., 50 (4), 923–927 (5 pages).

    Article  CAS  Google Scholar 

  • Di Serio, M.; Tesser, R.; Pengmei, L.; Santacesaria, E., (2008). Heterogeneous catalysts for biodiesel production. Energ. Fuel., 22 (1), 207–217 (11 pages).

    Article  CAS  Google Scholar 

  • Dias, J. M.; Alvim-Ferraz, M. C. M.; Almeida, M. E, (2008). Comparison of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel, 87 (17–18), 3572–3578 (7 pages).

    Article  CAS  Google Scholar 

  • Dorado, M. P.; Ballesteros, E.; Arnal, J. M.; Gomez, J.; Lopez, F. J., (2003a). Testing waste olive oil methyl ester as a fuel in a diesel engine. Energ. Fuel., 17 (6), 1560–1565 (6 pages).

    Article  CAS  Google Scholar 

  • Dorado, M. P.; Ballesteros, E.; Arnal, J. M.; Gomez, J.; Lopez, F. J., (2003b). Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel, 82 (11), 1311–1315 (5 pages).

    Article  CAS  Google Scholar 

  • Dorado, M. P.; Ballesteros, E.; Mittelbach, M.; Lopez, F. J., (2004). Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil. Energ. Fuel., 18 (5), 1457–1462 (6 pages).

    Article  CAS  Google Scholar 

  • Dorado, M. P.; Cruz, F.; Palomar, J. M.; Lopez, F. J., (2006). An approach to the economics of two vegetable oil-based biofuels in Spain. Renew. Energ., 31 (8), 1231–1237 (7 pages).

    Article  CAS  Google Scholar 

  • El Sheltawy, S. T.; Refaat, A. A, (2008). Using ultrasonication for fast production of biodiesel from waste vegetable oil in Egypt. Proceedings of The 23rd. International Conference on Solid Waste Technology and Management, March 30–April 2, 2008, Philadelphia, USA. 1288–1297.

    Google Scholar 

  • El Sheltawy, S. T.; Refaat, A. A., (2009). A recommended holistic policy framework for vegetable oil waste management in Egypt. Proceedings of the 24th International conference on solid waste technology and management (ICSW’09), Philadelphia, USA, March 15–18, 560–577.

    Google Scholar 

  • Encinar, J. M.; Gonzalez, J. F.; Rodriguez-Reinares, A., (2005). Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. Ind. Eng. Chem. Res., 44 (15), 5491–5499 (9 pages).

    Article  CAS  Google Scholar 

  • Encinar, J. M.; Juan, F.; Gonzalez, J. F.; Rodriguez-Reinares, A., (2007). Ethanolysis of used frying oils: Biodiesel preparation and Characterization. Fuel Process. Tech., 88 (5), 513–522 (10 pages).

    Article  CAS  Google Scholar 

  • Felizardo, P.; Correia, M. J.; Raposo, I.; Mendes, J. F.; Berkemeier, R.; Bordado J. M., (2006). Production of biodiesel from waste frying oils. Waste Manage., 26 (5), 487–494 (8 pages).

    Article  CAS  Google Scholar 

  • Fini, A.; Breccia, A., (1999). Chemistry by microwaves. Pure Appl. Chem., 71 (4), 573–579 (7 pages).

    Article  CAS  Google Scholar 

  • Freedman, B.; Butterfield, R. O.; Pryde, E. H., (1986). Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc, 63 (10), 1375–1380 (6 pages).

    Article  CAS  Google Scholar 

  • Freedman, B.; Pryde, E. H.; Mounts, T. L., (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc, 61 (10), 1638–1643 (6 pages).

    Article  CAS  Google Scholar 

  • Furuta, S.; Matsuhashi, H.; Arata, K., (2004). Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal. Commun., 5 (12), 721–723 (4 pages).

    Article  CAS  Google Scholar 

  • Ghobadian, B.; Rahimi, H.; Nikbakht, A. M.; Najafi, G.; Yusaf, T. F., (2009). Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renew. Energ., 34 (4), 976–982 (7 pages).

    Article  CAS  Google Scholar 

  • Gupta, A.; Sharma, S. K.; Pal Toor, A., (2007). Production of biodiesel from waste soybean oil. J. Petrotech Soc, IV (1), 40–45 (6 pages).

    Google Scholar 

  • Haas, M. J.; McAloon, A. J.; Yee, W. C.; Foglia, T. A., (2006). A process model to estimate biodiesel production costs. Bioresour. Tech., 97 (4), 671–678 (8 pages).

    Article  CAS  Google Scholar 

  • Han, H. W.; Cao, W. L.; Zhang J. C, (2005). Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochem., 40 (9), 3148–3151 (4 pages).

    Article  CAS  Google Scholar 

  • Hancsók, J.; Kovács, F.; Krár, M., (2004). Production of vegetable oil fatty acid methyl esters from used frying oil by combined acidic/alkali transesterification. Petrol. Coal., 46 (3), 36–44 (9 pages).

    Google Scholar 

  • Hanh, H. D.; Dong, N. T.; Starvarache, C.; Okitsu, K.; Maeda, Y.; Nishimura, R., (2008). Methanolysis of triolein by low frequency ultrasonic irradiation. Energ. Convers. Manage., 49 (2), 276–280 (5 pages).

    Article  CAS  Google Scholar 

  • Hayes, B. L. (2004). Recent advances in microwave-assisted synthesis. Aldrichimica Acta., 37 (2), 66–77 (12 pages).

    CAS  Google Scholar 

  • Hernando, J.; Leton, P.; Matia, M. P.; Novella, J. L.; Alvarez-Builla, J., (2007). Biodiesel and FAME synthesis assisted by microwaves: Homogeneous batch and flow processes. Fuel, 86 (10–11), 1641–1644 (6 pages).

    Article  CAS  Google Scholar 

  • Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D., (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Science of the United States of America (PNAS), 103 (30), 11206–11210 (5 pages).

    Article  CAS  Google Scholar 

  • Issariyakul, T.; Kulkarni, M. G.; Dalai, A. K.; Bakhshi, N. N. (2007). Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Process Tech., 88 (5), 429–436 (8 pages).

    Article  CAS  Google Scholar 

  • Jacobson, K.; Gopinath, R.; Meher, C.; Dalai, A. K., (2008). Solid acid catalyzed biodiesel production from waste cooking oil. Appl. Catal. B-Environ., 85 (1–2), 86–91 (6 pages).

    Article  CAS  Google Scholar 

  • Jitputti, J.; Kitiyanan, B.; Rangsunvigit, P.; Bunyakiat, K.; Attanatho, L.; Jenvanitpanjakul, P. (2006). Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem. Eng. J., 116 (1), 61–66 (6 pages).

    Article  CAS  Google Scholar 

  • Kegl, B., (2006). Experimental investigation of optimal timing of the diesel engine injection pump using biodiesel fuel. Energ. Fuel., 20 (4), 1460–1470 (11 pages).

    Article  CAS  Google Scholar 

  • Kegl, B., (2008). Effects of biodiesel on emissions of a bus diesel engine. Bioresour. Tech., 99 (4), 863–873 (11 pages).

    Article  CAS  Google Scholar 

  • Kelkar, M. A.; Gogate, P. R.; Pandit, A. B., (2008). Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation. Ultrason. Sonochem., 15 (3), 188–194 (7 pages).

    Article  CAS  Google Scholar 

  • Kiss, A. A.; Dimian, A. C.; Rothenberg, G., (2006). Solid acid catalysts for biodiesel production-towards sustainable energy. Adv. Synth. Catal., 348 (1–2), 75–81 (7 pages).

    Article  CAS  Google Scholar 

  • Knothe, G.; Steidley, K. R., (2009). A comparison of used cooking oils: A very heterogeneous feedstock for biodiesel. Bioresour. Tech., 100 (23), 5796–5801 (6 pages).

    Article  CAS  Google Scholar 

  • Koh, T. S.; Chung, K. H., (2008). Production of biodiesel from waste frying oil by transesterification on zeolite catalysts with different acidity. J. Korean Ind. Eng. Chem., 19 (2), 214–221 (8 pages).

    CAS  Google Scholar 

  • Kulkarni, M. G; Dalai, A. K., (2006). Waste cooking oil — an economical source for biodiesel: A review. Ind. Eng. Chem. Res., 45 (9), 2901–2913 (13 pages).

    Article  CAS  Google Scholar 

  • Kusdiana, D.; Saka, S., (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80 (5), 693–698 (6 pages).

    Article  CAS  Google Scholar 

  • Lam, M. K.; Tan, K. T.; Lee, K. T.; Mohamed, A. R., (2009). Malaysian palm oil: Surviving the food versus fuel debate for a sustainable future. Renew. Sust. Energ. Rev., 13 (6–7), 1456–1464 (9 pages).

    Article  CAS  Google Scholar 

  • Lapuerta, M.; Rodriguez-Fernandez, J.; Agudelo, J. R., (2008). Diesel particulate emissions from used cooking oil biodiesel. Bioresour. Tech., 99 (4), 731–740 (10 pages).

    Article  CAS  Google Scholar 

  • Leadbeater, N. E.; Stencel, L. M., (2006). Fast, easy preparation of biodiesel using microwave heating. Energ. Fuel., 20 (5), 2281–2283 (3 pages).

    Article  CAS  Google Scholar 

  • Lee, K. T.; Foglia, T. A.; Chang, K. S., (2002). Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. J. Am. Oil Chem. Soc, 79 (2), 191–195 (5 pages).

    Article  CAS  Google Scholar 

  • Leung, D. Y. C; Guo, Y., (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process Tech., 87 (10), 883–890 (8 pages).

    Article  CAS  Google Scholar 

  • Li, J.; Wang, X.; Zhu, W.; Cao, F., (2009). Zn1. 2H0.6PW12O40 Nanotubes with double acid sites as heterogeneous catalysts for the production of biodiesel from waste cooking oil. ChemSusChem., 2 (2), 177–183 (7 pages).

    Article  CAS  Google Scholar 

  • Li, N. W.; Zong, M. H.; Wu, H., (2009). Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem., 44 (6), 685–688 (4 pages).

    Article  CAS  Google Scholar 

  • Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J., (2001). Microwave assisted organic synthesis-a review. Tetrahedron, 57 (45), 9225–9283 (59 pages).

    Article  CAS  Google Scholar 

  • Lima, S. M.; Izida, T.; Figueiredo, M. S.; Andrade, L. H. C; Del Ré, P. V.; Jorge, N.; Buba, E.; Aristone, F., (2008). Analysis of biodiesel and frying vegetable oils by means of FTIR photoacoustic spectroscopy. Eur. Physic. J. Special Topics, 153 (1), 535–537 (3 pages).

    Article  Google Scholar 

  • Lopez, D. E.; Goodwin, J. G; Bruce, D. A; Furuta, S., (2008). Esterification and transesterification using modified-zirconia catalysts. Appl. Catal. A-Gen., 339 (1), 76–83 (8 pages).

    Article  CAS  Google Scholar 

  • Lotero, E.; Liu, Y.; Lopez, D. E.; Suwannakarn, K.; Bruce, D. A.; Goodwin, Jr., J. G, (2005). Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res., 44 (14), 5353–5363 (11 pages).

    Article  CAS  Google Scholar 

  • Lou, W. Y; Zong, M. H.; Duan, Z. Q., (2008). Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Tech., 99 (18), 8752–8758 (7 pages).

    Article  CAS  Google Scholar 

  • Ma, F.; Hanna, M. A., (1999). Biodiesel production: A review. Bioresour. Tech., 70 (1), 1–15 (15 pages).

    Article  CAS  Google Scholar 

  • Maceiras, R.; Vega, M.; Costa, C.; Ramos, P.; Marquez, M. C., (2009). Effect of methanol content on enzymatic production of biodiesel from waste frying oil. Fuel, 88 (11), 2130–2134 (5 pages).

    Article  CAS  Google Scholar 

  • Maniak, B.; Szmigielski, M.; Piekarski, W.; Markowska, A., (2009). Physicochemical changes of post-frying sunflower oil. Int. Agrophysic, 23 (3), 243–248 (6 pages).

    CAS  Google Scholar 

  • Marchetti, J. M.; Miguel, V. U.; Errazu, A. E, (2008). Technoeconomic study of different alternatives for biodiesel production. Fuel Process Tech., 89 (8), 740–748 (9 pages).

    Article  CAS  Google Scholar 

  • Marmesat, S.; Velasco, J.; Márquez-Ruiz, G.; Dobarganes, M. C., (2007a). A rapid method for determination of polar compounds in used frying fats and oils. Grasas Aceites. 58 (2), 179–184 (6 pages).

    CAS  Google Scholar 

  • Marmesat, S.; Rodrigues, E.; Velasco, J.; Dobarganes, C., (2007b). Quality of used frying fats and oils: Comparison of rapid tests based on chemical and physical oil properties. Int. J. Food Sci. Tech., 42 (5), 601–608 (8 pages).

    Article  CAS  Google Scholar 

  • Mazzocchia, C.; Modica, G.; Nannicini, R.; Kaddouri, A., (2004). Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. Cr. Chim., 7 (6–7), 601–605 (5 pages).

    Article  CAS  Google Scholar 

  • Meher, L. C.; Sagar, D. V.; Naik, S. N., (2006). Technical aspects of biodiesel production by transesterification-a review. Renew. Sust. Energ. Rev., 10 (3), 248–268 (21 pages).

    Article  CAS  Google Scholar 

  • Meng, X.; Chen, G.; Wang, Y., (2008). Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Process Tech., 89 (9), 851–857 (7 pages).

    Article  CAS  Google Scholar 

  • Metzger, J. O., (2009). Fats and oils as renewable feedstock for chemistry. Eur. J. Lipid Sci. Tech., 111 (9), 865–876 (12 pages).

    Article  CAS  Google Scholar 

  • Mingos, D. M. P.; Baghurst, D. R., (1991). Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev., 20 (1), 1–47 (47 pages).

    Article  CAS  Google Scholar 

  • Murillo, S.; Miguez, J. L.; Porteiro, J.; Granada, E.; Moran, J. C., (2007). Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel, 86 (12–13), 1765–1771 (6 pages).

    Article  CAS  Google Scholar 

  • Najafi, G.; Ghobadian, B.; Yusaf, T. F.; Rahimi, H., (2007). Combustion analysis of a CI engine performance using waste cooking biodiesel fuel with an artificial neural network aid. Am. J. Appl. Sci., 4 (10), 759–767 (9 pages).

    Article  CAS  Google Scholar 

  • Noureddini, H.; Zhu, D., (1997). Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc, 74 (11), 1457–1463 (7 pages).

    Article  CAS  Google Scholar 

  • Om Tapanes, N. C.; Gomes Aranda, D. A.; de Mesquita Carneiro, J. W.; Ceva Antunes, O. A., (2008). Transesterification of Jatropha curcas oil glycerides: Theoretical and experimental studies of biodiesel reaction. Fuel, 87 (10–11), 2286–2295 (10 pages).

    Article  CAS  Google Scholar 

  • Ozbay, N.; Oktar, N.; Tapan, N. A., (2008). Esterification of free fatty acids in waste cooking oils (WCO): Role of ion exchange resins. Fuel, 87 (11–12), 1789–1798 (10 pages).

    Article  CAS  Google Scholar 

  • Ozgunay, H.; Colak, S.; Zengin, G.; Sari, O.; Sarikahya, H.; Yuceer, L., (2007). Performance and emission study of biodiesel from leather industry pre-fleshings. Waste Manage., 27 (12), 1897–1901 (5 pages).

    Article  CAS  Google Scholar 

  • Peng, B. X.; Shu, Q.; Wang, J. F.; Wang, G R.; Wang, D. Z.; Han, M. H., (2008). Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Saf. Environ. Protect., 86 (6), 441–447 (7 pages).

    Article  CAS  Google Scholar 

  • Perreux, L.; Loupy, A., (2001). A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 57 (45), 9199–9223 (25 pages).

    Article  CAS  Google Scholar 

  • Pimentel, D.; Marklein, A.; Toth, M. A.; Karpoff, M. N.; Paul, G. S.; McCormack, R.; Kyriazis, J.; Krueger, T., (2009). Food versus biofuels: Environmental and economic costs. Hum. Eco., 37 (1), 1–12 (13 pages).

    Article  Google Scholar 

  • Pinto, A. C.; Guarieiro, L. N.; Rezende, M. J.; Ribeiro, N. M.; Torres, E. A.; Lopes, W. A.; Pereira, P. A.; Andrade, J. B. (2005). Biodiesel: An overview. J. Brazil. Chem. Soc, 16 (6B), 1313–1330 (18 pages).

    Article  CAS  Google Scholar 

  • Pramanik, K., (2003). Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew. Energ., 28 (2), 239–248 (10 pages).

    Article  CAS  Google Scholar 

  • Predojevic, Z. J., (2008). The production of biodiesel from waste frying oils: A comparison of different purification steps. Fuel, 87 (17–18), 3522–3528 (7 pages).

    Article  CAS  Google Scholar 

  • Ramadhas, A. S., Muraleedharan, C.; Jayaraj, S., (2005). Performance and emission evaluation of a diesel engine fueled with methyl esthers of rubber seed oil. Renew. Energ., 30 (12), 1789–1800 (12 pages).

    Article  CAS  Google Scholar 

  • Refaat, A. A., (2009). Correlation between the chemical structure of biodiesel and its physical properties. Int. J. Environ. Sci. Tech., 6 (4), 677–694 (18 pages).

    CAS  Google Scholar 

  • Refaat, A. A; Attia, N. K.; Sibak, H. A.; El Sheltawy, S. T.; El Diwani, G. I., (2008a). Production optimization and quality assessment of biodiesel from waste vegetable oil. Int. J. Environ. Sci. Tech., 5 (1), 75–82 (8 pages).

    Article  CAS  Google Scholar 

  • Refaat, A. A.; El Sheltawy, S. T., (2008). Comparing three options for biodiesel production from waste vegetable oil. WIT Transactions on Ecology and the Environment, Waste Management and the Environment IV, Vol. 109, WIT Press, 133–140.

    Article  CAS  Google Scholar 

  • Refaat, A. A; El Sheltawy, S. T.; Sadek, K. U., (2008b). Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation. Int. J. Environ. Sci. Tech., 5 (3), 315–322 (8 pages).

    Article  CAS  Google Scholar 

  • Rodrigues Machado, E.; Marmesat, S.; Abrantes, S. I.; Dobarganes, C., (2007). Uncontrolled variables in frying studies: differences in repeatability between thermoxidation and frying experiments. Grasas Aceites., 58 (3), 283–288 (6 pages).

    Google Scholar 

  • Ruiz-Méndez, M. V.; Marmesat, S.; Liotta, A.; Dobarganes, M. C., (2008). Analysis of used frying fats for the production of biodiesel. Grasas Aceites., 59 (1), 45–50 (6 pages).

    Article  Google Scholar 

  • Rutz, D.; Janssen, R., (2008). Biofuel technology handbook. 2nd. Version, WIP Renewable Energies, Munchen, Germany. Saifuddin, N.; Chua, K. H., (2004). Production of ethyl ester (Biodiesel) from used frying oil: Optimization of transesterification process using microwave irradiation. Malays. J. Chem., 6 (1), 77–82 (6 pages).

    Google Scholar 

  • Schuchardt, U.; Serchelia, R.; Vargas, R. M., (1998). Transesterification of vegetable oils: a review. J. Brazil. Chem. Soc, 9 (1), 199–210 (12 pages).

    CAS  Google Scholar 

  • Shimada, Y.; Watanabe, Y.; Sugihara, A.; Tominaga, Y, (2002). Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Molecul. Catal. B: Enzymatic, 17 (3–5), 133–142 (10 pages).

    Article  CAS  Google Scholar 

  • Singh, A.; He, B.; Thompson, J.; van Gerpen, J., (2006). Process optimization of biodiesel production using different alkaline catalysts. Appl. Eng. Agr., 22 (4), 597–600 (4 pages).

    Google Scholar 

  • Singh, A. K.; Fernando, S. D., (2006). Catalyzed fast-transesterification of soybean oil using ultrasonication. American Society of Agricultural Engineers, ASAE Annual Meeting, Portland, Oregon, USA, July 9–July 12, Paper number 066220.

    Google Scholar 

  • Sivasamy, A.; Cheah, K. Y.; Fornasiero, P.; Kemausuor, F.; Zinoviev, S.; Miertus, S., (2009). Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem, 2 (4), 278–300 (23 pages).

    Article  CAS  Google Scholar 

  • Srinivasan, S., (2009). The food v fuel debate: a nuanced view of incentive structures. Renew. Energ., 34 (4), 950–954 (5 pages).

    Article  Google Scholar 

  • Stamenkovic, O. S.; Lazic, M. L.; Todorovic, Z. B.; Veljkovic, V. B.; Skala, D. U., (2007). The effect of agitation intensity on alkali-catalyzed methanolysis of sunflower oil. Bioresour. Tech., 98 (14), 2688–2699 (12 pages).

    Article  CAS  Google Scholar 

  • Stavarache, C.; Vinatoru, M.; Maeda, Y, (2007a). Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrason. Sonochem., 14 (3), 380–386 (7 pages).

    Article  CAS  Google Scholar 

  • Stavarache, C.; Vinatoru, M.; Maeda, Y.; Bandow, H. (2007b). Ultrasonically driven continuous process for vegetable oil transesterification. Ultrason. Sonochem., 14 (4), 413–417 (5 pages).

    Article  CAS  Google Scholar 

  • Stavarache, C.; Vinatoru, M.; Nishimura, R.; Maeda, Y., (2005). Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrasoni. Sonochem., 12 (5), 367–372 (6 pages).

    Article  CAS  Google Scholar 

  • Sudhir, C. V; Sharma, N. Y; Mohanan, P., (2007). Potential of waste cooking oil as biodiesel feedstock. Emirates J. Eng. Res., 12 (3), 69–75 (7 pages).

    Google Scholar 

  • Supple, B.; Howard-Hildige, R.; Gonzalez-Gomez, E.; Leahy, J. J., (2002). The effect of steam treating waste cooking oil on the yield of methyl ester. J. Am. Oil Chem. Soc, 79 (2), 175–178 (4 pages).

    Article  CAS  Google Scholar 

  • Szmigielski, M.; Maniak, B.; Piekarski, W., (2008). Evaluation of chosen quality parameters of used frying rape oil as fuel biocomponent. Int. Agrophys., 22 (4), 361–364 (4 pages).

    CAS  Google Scholar 

  • Tashtoush, Gh., Al-Widyan, M. I.; Al-Shyoukh, A. O., (2003). Combustion performance and emissions of ethyl ester of a waste vegetable oil in a water-cooled furnace. Appl. Therm. Eng., 23 (3), 285–293 (4 pages).

    Article  CAS  Google Scholar 

  • Tat, M. E.; van Gerpen, J. H.; Wang, P. S., (2007). Fuel property effects on injection timing, ignition timing, and oxides of nitrogen emissions from biodiesel-fueled engines. Am. Soc. Agr. Eng., 50 (4), 1123–1128 (6 pages).

    CAS  Google Scholar 

  • Tehrani, S. M.; Karbassi, A. R.; Ghoddosi, J.; Monavvari, S. M.; Mirbagheri, S. A., (2009). Prediction of energy consumption and urban air pollution reduction in e-shopping adoption. J. Food, Agr. Environ. 7 (3–4), 132–137 (6 pages).

    Google Scholar 

  • Tomasevic, A. V.; Siler-Marinkovic, S. S., (2003). Methanolysis of used frying oil. Fuel Process Tech., 81 (1), 1–6 (6 pages).

    Article  CAS  Google Scholar 

  • Tschakert, P.; Huber-Sannwald, E.; Ojima, D. S.; Raupach, M. R.; Schienke, E., (2008). Holistic, adaptive management of the terrestrial carbon cycle at local and regional scales. Glob. Environ. Change, 18 (1), 128–141 (14 pages).

    Article  Google Scholar 

  • Usta, N., (2005). Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass Bioenerg., 28 (1), 77–86 (10 pages).

    Article  CAS  Google Scholar 

  • Utlu, Z.; Kocak, M. S., (2008). The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions. Renew. Energ., 33 (8), 1936–1941 (6 pages).

    Article  CAS  Google Scholar 

  • van Gerpen, J. H., (2005). Biodiesel processing and production. Fuel Process Tech., 86 (10), 1097–1107 (11 pages).

    Article  CAS  Google Scholar 

  • van Kasteren, J. M. N.; Nisworo, A. P., (2007). A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour., Consery. Recy., 50 (4), 442–458 (37 pages).

    Article  Google Scholar 

  • Varma, R. S., (2001). Solvent-free accelerated organic syntheses using microwaves. Pure Appl. Chem., 73 (1), 193–198 (6 pages).

    Article  CAS  Google Scholar 

  • Volmajer, M.; Kegl, B., (2003). Biodiesel and waste cooking oil as the alternative fuels: The injection process aspect. Fuel. Lubricants, 42 (3), 177–197 (21 pages).

    Google Scholar 

  • Wan Omar, W. N. N.; Nordin, N.; Mohamed, M.; Amin, N. A. S., (2009). A two-step biodiesel production from waste cooking oil: Optimization of pre-treatment step. J. Appl. Sci., 9 (17), 3098–3103 (6 pages).

    Article  Google Scholar 

  • Wang, Y.; Ou, S.; Liu, P.; Xue, F.; Tang, S., (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A-Chem., 252 (1–2), 107–112 (6 pages).

    Article  CAS  Google Scholar 

  • Warabi, Y.; Kusdiana, D.; Saka, S., (2004). Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresour. Tech., 91 (3), 283–287 (5 pages).

    Article  CAS  Google Scholar 

  • Watanabe, Y.; Shimada, Y.; Sugihara, A.; Tominaga, Y., (2001). Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. J. Am. Oil Chem. Soc, 78 (7), 703–707 (5 pages).

    Article  CAS  Google Scholar 

  • Wen, D.; Jiang, H.; Zhang, K., (2009). Supercritical fluids technology for clean biofuel production. Prog. Nat. Sci., 19 (3), 273–284 (12 pages).

    Article  CAS  Google Scholar 

  • West, A. H.; Posarac, D.; Ellis, N., (2008). Assessment of four biodiesel production processes using HYSYS. Plant. Bioresour. Tech. 99 (14), 6587–6601 (15 pages).

    Article  CAS  Google Scholar 

  • Wong, N. H.; Law, P. L.; Lai, S. H., (2007). Field tests on a grease trap effluent filter. Int. J. Environ. Sci. Tech., 4 (3), 345–350 (6 pages).

    CAS  Google Scholar 

  • Wu, P.; Yang, Y; Colucci, J. A; Grulke, E. A., (2007). Effect of ultrasonication on droplet size in biodiesel mixtures. J. Am. Oil Chem. Soc, 84 (9), 877–884 (8 pages).

    Article  CAS  Google Scholar 

  • Yin, J. Z.; Xiao, M.; Song, J. B., (2008). Biodiesel from soybean oil in supercritical methanol with co-solvent. Energ. Conver. Manage., 49 (5), 908–912 (5 pages).

    Article  CAS  Google Scholar 

  • Yuan, X.; Liu, J.; Zeng, G.; Shi, J.; Tong, J.; Huang, G., (2008). Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew. Energ., 33 (7), 1678–1684 (7 pages).

    Article  CAS  Google Scholar 

  • Zhang, Y.; Dube, M. A.; McLean, D. D.; Kates, M., (2003a). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Tech., 89 (1), 1–16 (16 pages).

    Article  CAS  Google Scholar 

  • Zhang, Y; Dube, M. A.; McLean, D. D.; Kates, M., (2003b). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Tech., 90 (3), 229–240 (12 pages).

    Article  CAS  Google Scholar 

  • Zheng, S.; Kates, M.; Dube, M. A.; McLean, D. D., (2006). Acid-catalyzed production of biodiesel from waste frying oil. Biomass Bioenerg., 30 (3), 267–272 (6 pages).

    Article  CAS  Google Scholar 

  • Zhou, W.; Boocock, D. G B., (2006). Phase behavior of the base-catalyzed transesterification of soybean oil. J. Am. Oil Chem. Soc, 83 (12), 1041–1045 (5 pages).

    Article  CAS  Google Scholar 

  • Zong, M. H.; Duan, Z. Q.; Lou, W. Y.; Smith, T. J.; Wu, H., (2007). Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chem., 9 (5), 434–437 (4 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Refaat B.Sc. (Hons), M. Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Refaat, A.A. Different techniques for the production of biodiesel from waste vegetable oil. Int. J. Environ. Sci. Technol. 7, 183–213 (2010). https://doi.org/10.1007/BF03326130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326130

Keywords

Navigation