Skip to main content
Log in

Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators

  • Review
  • Published:
Lipids

Abstract

Hypercholesterolemia is a major risk factor for cardiovascular disease. Cholesterol homeostasis in the body is governed by the interplay between absorption, synthesis, and excretion or conversion of cholesterol into bile acids. A reciprocal relationship between cholesterol synthesis and absorption is known to regulate circulating cholesterol in response to dietary or therapeutic interventions. However, the degree to which these factors affect synthesis and absorption and the extent to which one vector shifts in response to the other are not thoroughly understood. Also, huge inter-individual variability exists in the manner in which the two systems act in response to any cholesterol-lowering treatment. Various factors are known to account for this variability and in light of recent experimental advances new players such as gene–gene interactions, gene–environmental effects, and gut microbiome hold immense potential in offering an explanation to the complex traits of inter-individual variability in human cholesterol metabolism. In this context, the objective of the present review is to provide an overview on cholesterol metabolism and discuss the role of potential factors such as genetics, epigenetics, epistasis, and gut microbiome, as well as other regulators in modulating cholesterol metabolism, especially emphasizing the reciprocal relationship between cholesterol synthesis and absorption. Furthermore, an evaluation of the implications of this push–pull mechanism on cholesterol-lowering strategies is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABC:

Adenosine triphosphate protein binding cassette transporter

ABCG5/G8:

ABC, subfamily G, members 5/8

ABCA1:

Adenosine triphosphate protein binding cassette transporter A1

ACAT2:

Acetyl-CoA acetyltransferase

apoA1:

Apolipoprotein A1

apoB48:

Apolipoprotein B48

apoE:

Apolipoprotein E

5AZA:

5-Aza-2′-deoxycytidine

CBP/p300:

Histone acetylase cyclic adenosine monophosphate responsive element binding protein 1-binding protein

CE:

Cholesteryl ester(s)

CEL:

Carboxyl ester lipase

CVD:

Cardiovascular disease

CYP7A1:

Cholesterol 7α-hydroxylase

CYP8B:

Sterol 12α-hydroxylase

DI:

Deuterium incorporation

FSR:

Fractional synthesis rate

FXR:

Farnesoid X receptor

GWAS:

Genome-wide association studies

HDAC3:

Histone deacetylase 3

HDL-C:

High density lipoprotein cholesterol

HMG-CoA:

3-Hydroxy-3-methylglutaryl-coenzyme A

HMGCS:

3-Hydroxy-3-methylglutaryl-coenzyme A synthase

HMGCR:

3-Hydroxy-3-methylglutaryl-coenzyme A reductase

LDL-C:

Low density lipoprotein cholesterol

LDLr:

Low density lipoprotein receptor

LIPC:

Hepatic triglyceride lipase

LSS:

Lanosterol synthase

LXR:

Liver X receptor(s)

MIDA:

Mass isotopomer distribution analysis

miRNA:

Micro-ribonucleic acid(s)

MTTP:

Microsomal triglyceride transfer protein

NPC1L1:

Niemann–Pick C1-like 1 protein

PARK2:

Parkin ring between ring family E3 ubiquitin protein ligase

PUFA:

Polyunsaturated fatty acids

SCAP:

SREBP cleavage-activating protein

SCF:

Skp, Cullin, F-box containing complex

SCFA:

Short chain fatty acid(s)

SFA:

Saturated fatty acid(s)

SIRT:

Sirtuin

SNP:

Single nucleotide polymorphisms

SRE:

Sterol response element

SREBP:

Sterol regulatory binding protein

TAG:

Triacylglycerols

TC:

Total cholesterol

References

  1. World Health Organization (2011) Global status report on noncommunicable diseases 2010. http://www.who.int/nmh/publications/ncd_report_full_en.pdf. Accessed 15 Dec 2014

  2. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu J, Sempos CT, Donahue RP, Dorn J, Trevisan M, Grundy SM (2006) Non-high-density lipoprotein and very-low-density lipoprotein cholesterol and their risk predictive values in coronary heart disease. Am J Cardiol 98:1363–1368

    Article  CAS  PubMed  Google Scholar 

  4. Vance DE, Vance JE (2002) Biochemistry of lipids, lipoproteins, and membranes. Elsevier, Amsterdam

    Google Scholar 

  5. Jones PJH, Rideout T (2012) Lipids, sterols, and their metabolites. In: Ross AC, Caballero B, Cousins JR, Tucker KL, Ziegler TR (eds) Modern nutrition in health and disease. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  6. Rezen T, Rozman D, Pascussi JM, Monostory K (2011) Interplay between cholesterol and drug metabolism. Biochim Biophys Acta 1814:146–160

    Article  CAS  PubMed  Google Scholar 

  7. Porter FD (2003) Human malformation syndromes due to inborn errors of cholesterol synthesis. Curr Opin Pediatr 15:607–613

    Article  PubMed  Google Scholar 

  8. Mc Auley MT, Wilkinson DJ, Jones JJ, Kirkwood TB (2012) A whole-body mathematical model of cholesterol metabolism and its age-associated dysregulation. BMC Syst Biol 6:130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quintao E, Grundy SM, Ahrens EH Jr (1971) Effects of dietary cholesterol on the regulation of total body cholesterol in man. J Lipid Res 12:233–247

    CAS  PubMed  Google Scholar 

  10. Steck TL, Lange Y (2010) Cell cholesterol homeostasis: mediation by active cholesterol. Trends Cell Biol 20:680–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeon TI, Osborne TF (2012) SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 23:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grundy SM, Ahrens EH Jr, Davignon J (1969) The interaction of cholesterol absorption and cholesterol synthesis in man. J Lipid Res 10:304–315

    CAS  PubMed  Google Scholar 

  13. Santosa S, Varady KA, AbuMweis S, Jones PJ (2007) Physiological and therapeutic factors affecting cholesterol metabolism: does a reciprocal relationship between cholesterol absorption and synthesis really exist? Life Sci 80:505–514

    Article  CAS  PubMed  Google Scholar 

  14. Pallottini V, Montanari L, Cavallini G, Bergamini E, Gori Z, Trentalance A (2004) Mechanisms underlying the impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in aged rat liver. Mech Ageing Dev 125:633–639

    Article  CAS  PubMed  Google Scholar 

  15. Sharpe LJ, Brown AJ (2013) Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem 288:18707–18715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meaney S (2014) Epigenetic regulation of cholesterol homeostasis. Front Genet 5:311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gill S, Stevenson J, Kristiana I, Brown AJ (2011) Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Cell Metab 13:260–273

    Article  CAS  PubMed  Google Scholar 

  18. Ye J, DeBose-Boyd RA (2011) Regulation of cholesterol and fatty acid synthesis. Cold Spring Harb Perspect Biol 3:a004754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Investig 109:1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones PJ (1997) Regulation of cholesterol biosynthesis by diet in humans. Am J Clin Nutr 66:438–446

    CAS  PubMed  Google Scholar 

  21. Neese RA, Faix D, Kletke C, Wu K, Wang AC, Shackleton CH, Hellerstein MK (1993) Measurement of endogenous synthesis of plasma cholesterol in rats and humans using MIDA. Am J Physiol 264:E136–E147

    CAS  PubMed  Google Scholar 

  22. Jones PJ, Ausman LM, Croll DH, Feng JY, Schaefer EA, Lichtenstein AH (1998) Validation of deuterium incorporation against sterol balance for measurement of human cholesterol biosynthesis. J Lipid Res 39:1111–1117

    CAS  PubMed  Google Scholar 

  23. Wang Y, Jones PJ, Ausman LM, Lichtenstein AH (2004) Soy protein reduces triglyceride levels and triglyceride fatty acid fractional synthesis rate in hypercholesterolemic subjects. Atherosclerosis 173:269–275

    Article  CAS  PubMed  Google Scholar 

  24. Woollett LA, Buckley DD, Yao L, Jones PJ, Granholm NA, Tolley EA, Heubi JE (2003) Effect of ursodeoxycholic acid on cholesterol absorption and metabolism in humans. J Lipid Res 44:935–942

    Article  CAS  PubMed  Google Scholar 

  25. Jenkins DJ, Wolever TM, Vuksan V, Brighenti F, Cunnane SC, Rao AV, Jenkins AL, Buckley G, Patten R, Singer W et al (1989) Nibbling versus gorging: metabolic advantages of increased meal frequency. N Engl J Med 321:929–934

    Article  CAS  PubMed  Google Scholar 

  26. Jones PJ, Main BF, Frohlich JJ (1993) Response of cholesterol synthesis to cholesterol feeding in men with different apolipoprotein E genotypes. Metabolism 42:1065–1071

    Article  CAS  PubMed  Google Scholar 

  27. Mustad VA, Ellsworth JL, Cooper AD, Kris-Etherton PM, Etherton TD (1996) Dietary linoleic acid increases and palmitic acid decreases hepatic LDL receptor protein and mRNA abundance in young pigs. J Lipid Res 37:2310–2323

    CAS  PubMed  Google Scholar 

  28. Jones PJ, Lichtenstein AH, Schaefer EJ, Namchuk GL (1994) Effect of dietary fat selection on plasma cholesterol synthesis in older, moderately hypercholesterolemic humans. Arterioscler Thromb 14:542–548

    Article  CAS  PubMed  Google Scholar 

  29. Shepherd J, Packard CJ, Grundy SM, Yeshurun D, Gotto AM Jr, Taunton OD (1980) Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J Lipid Res 21:91–99

    CAS  PubMed  Google Scholar 

  30. Grundy SM, Ahrens EH Jr (1970) The effects of unsaturated dietary fats on absorption, excretion, synthesis, and distribution of cholesterol in man. J Clin Investig 49:1135–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McNamara DJ, Kolb R, Parker TS, Batwin H, Samuel P, Brown CD, Ahrens EH Jr (1987) Heterogeneity of cholesterol homeostasis in man. Response to changes in dietary fat quality and cholesterol quantity. J Clin Investig 79:1729–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Glatz JF, Katan MB (1993) Dietary saturated fatty acids increase cholesterol synthesis and fecal steroid excretion in healthy men and women. Eur J Clin Investig 23:648–655

    Article  CAS  Google Scholar 

  33. Nestel PJ, Poyser A (1976) Changes in cholesterol synthesis and excretion when cholesterol intake is increased. Metabolism 25:1591–1599

    Article  CAS  PubMed  Google Scholar 

  34. Lin DS, Connor WE (1980) The long term effects of dietary cholesterol upon the plasma lipids, lipoproteins, cholesterol absorption, and the sterol balance in man: the demonstration of feedback inhibition of cholesterol biosynthesis and increased bile acid excretion. J Lipid Res 21:1042–1052

    CAS  PubMed  Google Scholar 

  35. McMurry MP, Connor WE, Lin DS, Cerqueira MT, Connor SL (1985) The absorption of cholesterol and the sterol balance in the Tarahumara Indians of Mexico fed cholesterol-free and high cholesterol diets. Am J Clin Nutr 41:1289–1298

    CAS  PubMed  Google Scholar 

  36. Jones PJ, Pappu AS, Hatcher L, Li ZC, Illingworth DR, Connor WE (1996) Dietary cholesterol feeding suppresses human cholesterol synthesis measured by deuterium incorporation and urinary mevalonic acid levels. Arterioscler Thromb Vasc Biol 16:1222–1228

    Article  CAS  PubMed  Google Scholar 

  37. Jones PJ, Lichtenstein AH, Schaefer EJ (1994) Interaction of dietary fat saturation and cholesterol level on cholesterol synthesis measured using deuterium incorporation. J Lipid Res 35:1093–1101

    CAS  PubMed  Google Scholar 

  38. Wilson JD, Lindsey CA Jr (1965) Studies on the influence of dietary cholesterol on cholesterol metabolism in the isotopic steady state in man. J Clin Investig 44:1805–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Everson GT, McKinley C, Kern F Jr (1991) Mechanisms of gallstone formation in women. Effects of exogenous estrogen (Premarin) and dietary cholesterol on hepatic lipid metabolism. J Clin Invest 87:237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miettinen TA, Kesaniemi YA (1989) Cholesterol absorption: regulation of cholesterol synthesis and elimination and within-population variations of serum cholesterol levels. Am J Clin Nutr 49:629–635

    CAS  PubMed  Google Scholar 

  41. Gylling H, Miettinen TA (2002) Inheritance of cholesterol metabolism of probands with high or low cholesterol absorption. J Lipid Res 43:1472–1476

    Article  CAS  PubMed  Google Scholar 

  42. Lecerf JM, de Lorgeril M (2011) Dietary cholesterol: from physiology to cardiovascular risk. Br J Nutr 106:6–14

    Article  CAS  PubMed  Google Scholar 

  43. Tchernof A (2007) Visceral adipocytes and the metabolic syndrome. Nutr Rev 65:S24–S29

    Article  PubMed  Google Scholar 

  44. Ritchie SA, Connell JM (2007) The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 17:319–326

    Article  CAS  PubMed  Google Scholar 

  45. Gylling H, Miettinen TA (2005) Cholesterol absorption: influence of body weight and the role of plant sterols. Curr Atheroscler Rep 7:466–471

    Article  CAS  PubMed  Google Scholar 

  46. Miettinen TA, Gylling H (2000) Cholesterol absorption efficiency and sterol metabolism in obesity. Atherosclerosis 153:241–248

    Article  CAS  PubMed  Google Scholar 

  47. Di Buono M, Hannah JS, Katzel LI, Jones PJ (1999) Weight loss due to energy restriction suppresses cholesterol biosynthesis in overweight, mildly hypercholesterolemic men. J Nutr 129:1545–1548

    PubMed  Google Scholar 

  48. Jones PJ, Schoeller DA (1990) Evidence for diurnal periodicity in human cholesterol synthesis. J Lipid Res 31:667–673

    CAS  PubMed  Google Scholar 

  49. Cella LK, Van Cauter E, Schoeller DA (1995) Effect of meal timing on diurnal rhythm of human cholesterol synthesis. Am J Physiol 269:E878–E883

    CAS  PubMed  Google Scholar 

  50. Jurevics H, Hostettler J, Barrett C, Morell P, Toews AD (2000) Diurnal and dietary-induced changes in cholesterol synthesis correlate with levels of mRNA for HMG-CoA reductase. J Lipid Res 41:1048–1054

    CAS  PubMed  Google Scholar 

  51. Ishida H, Yamashita C, Kuruta Y, Yoshida Y, Noshiro M (2000) Insulin is a dominant suppressor of sterol 12 alpha-hydroxylase P450 (CYP8B) expression in rat liver: possible role of insulin in circadian rhythm of CYP8B. J Biochem 127:57–64

    Article  CAS  PubMed  Google Scholar 

  52. Vlahcevic ZR, Eggertsen G, Bjorkhem I, Hylemon PB, Redford K, Pandak WM (2000) Regulation of sterol 12alpha-hydroxylase and cholic acid biosynthesis in the rat. Gastroenterology 118:599–607

    Article  CAS  PubMed  Google Scholar 

  53. Murphy C, Parini P, Wang J, Bjorkhem I, Eggertsen G, Gafvels M (2005) Cholic acid as key regulator of cholesterol synthesis, intestinal absorption and hepatic storage in mice. Biochim Biophys Acta 1735:167–175

    Article  CAS  PubMed  Google Scholar 

  54. Chiang JY (2004) Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40:539–551

    Article  CAS  PubMed  Google Scholar 

  55. Woollett LA, Buckley DD, Yao L, Jones PJ, Granholm NA, Tolley EA, Tso P, Heubi JE (2004) Cholic acid supplementation enhances cholesterol absorption in humans. Gastroenterology 126:724–731

    Article  CAS  PubMed  Google Scholar 

  56. Geelen MJ, Gibson DM, Rodwell VW (1986) Hydroxymethylglutaryl-CoA reductase–the rate-limiting enzyme of cholesterol biosynthesis. A report of a meeting held at Nijenrode Castle, Breukelen, the Netherlands, August 24, 1985. FEBS Lett 201:183–186

    Article  CAS  PubMed  Google Scholar 

  57. Shin DJ, Osborne TF (2003) Thyroid hormone regulation and cholesterol metabolism are connected through sterol regulatory element-binding protein-2 (SREBP-2). J Biol Chem 278:34114–34118

    Article  CAS  PubMed  Google Scholar 

  58. Feramisco JD, Goldstein JL, Brown MS (2004) Membrane topology of human insig-1, a protein regulator of lipid synthesis. J Biol Chem 279:8487–8496

    Article  CAS  PubMed  Google Scholar 

  59. Leoni S, Spagnuolo S, Conti Devirgiliis L, Dini L, Mangiantini MT, Trentalance A (1985) Hormonal control of cholesterogenesis and related enzymes in isolated rat hepatocytes during pre- and postnatal development. J Cell Physiol 125:507–511

    Article  CAS  PubMed  Google Scholar 

  60. Pihlajamaki J, Gylling H, Miettinen TA, Laakso M (2004) Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. J Lipid Res 45:507–512

    Article  PubMed  CAS  Google Scholar 

  61. Gylling H, Hallikainen M, Pihlajamaki J, Agren J, Laakso M, Rajaratnam RA, Rauramaa R, Miettinen TA (2004) Polymorphisms in the ABCG5 and ABCG8 genes associate with cholesterol absorption and insulin sensitivity. J Lipid Res 45:1660–1665

    Article  CAS  PubMed  Google Scholar 

  62. Gylling H, Miettinen TA (1997) Cholesterol absorption, synthesis, and LDL metabolism in NIDDM. Diabetes Care 20:90–95

    Article  CAS  PubMed  Google Scholar 

  63. Messa C, Notarnicola M, Russo F, Cavallini A, Pallottini V, Trentalance A, Bifulco M, Laezza C, Gabriella Caruso M (2005) Estrogenic regulation of cholesterol biosynthesis and cell growth in DLD-1 human colon cancer cells. Scand J Gastroenterol 40:1454–1461

    Article  CAS  PubMed  Google Scholar 

  64. Distefano E, Marino M, Gillette JA, Hanstein B, Pallottini V, Bruning J, Krone W, Trentalance A (2002) Role of tyrosine kinase signaling in estrogen-induced LDL receptor gene expression in HepG2 cells. Biochim Biophys Acta 1580:145–149

    Article  CAS  PubMed  Google Scholar 

  65. Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, Horton JD (1997) Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invesigt 100:2115–2124

    Article  CAS  Google Scholar 

  66. Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton VP Jr, Ridker PM (2004) Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 291:2821–2827

    Article  CAS  PubMed  Google Scholar 

  67. Berthold HK, Laaksonen R, Lehtimaki T, Gylling H, Krone W, Gouni-Berthold I (2008) SREBP-1c gene polymorphism is associated with increased inhibition of cholesterol-absorption in response to ezetimibe treatment. Exp Clin Endocrinol Diabetes 116:262–267

    Article  CAS  PubMed  Google Scholar 

  68. Lusis AJ, Pajukanta P (2008) A treasure trove for lipoprotein biology. Nat Genet 40:129–130

    Article  CAS  PubMed  Google Scholar 

  69. Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP, Penninx BW, Janssens AC, Wilson JF, Spector T, Martin NG, Pedersen NL, Kyvik KO, Kaprio J, Hofman A, Freimer NB, Jarvelin MR, Gyllensten U, Campbell H, Rudan I, Johansson A, Marroni F, Hayward C, Vitart V, Jonasson I, Pattaro C, Wright A, Hastie N, Pichler I, Hicks AA, Falchi M, Willemsen G, Hottenga JJ, de Geus EJ, Montgomery GW, Whitfield J, Magnusson P, Saharinen J, Perola M, Silander K, Isaacs A, Sijbrands EJ, Uitterlinden AG, Witteman JC, Oostra BA, Elliott P, Ruokonen A, Sabatti C, Gieger C, Meitinger T, Kronenberg F, Doring A, Wichmann HE, Smit JH, McCarthy MI, van Duijn CM, Peltonen L (2009) Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 41:47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, Cooper GM, Roos C, Voight BF, Havulinna AS, Wahlstrand B, Hedner T, Corella D, Tai ES, Ordovas JM, Berglund G, Vartiainen E, Jousilahti P, Hedblad B, Taskinen MR, Newton-Cheh C, Salomaa V, Peltonen L, Groop L, Altshuler DM, Orho-Melander M (2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40:189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, Jones CG, Zaitlen NA, Varilo T, Kaakinen M, Sovio U, Ruokonen A, Laitinen J, Jakkula E, Coin L, Hoggart C, Collins A, Turunen H, Gabriel S, Elliot P, McCarthy MI, Daly MJ, Jarvelin MR, Freimer NB, Peltonen L (2009) Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 41:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marquart TJ, Allen RM, Ory DS, Baldan A (2010) miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 107:12228–12232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Elhanati S, Kanfi Y, Varvak A, Roichman A, Carmel-Gross I, Barth S, Gibor G, Cohen HY (2013) Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep 4:905–912

    Article  CAS  PubMed  Google Scholar 

  74. Yang M, Liu W, Pellicane C, Sahyoun C, Joseph BK, Gallo-Ebert C, Donigan M, Pandya D, Giordano C, Bata A, Nickels JT Jr (2014) Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J Lipid Res 55:226–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giandomenico V, Simonsson M, Gronroos E, Ericsson J (2003) Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol Cell Biol 23:2587–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, Boss O, Hirsch ML, Ribich S, Smith JJ, Israelian K, Westphal CH, Rodgers JT, Shioda T, Elson SL, Mulligan P, Najafi-Shoushtari H, Black JC, Thakur JK, Kadyk LC, Whetstine JR, Mostoslavsky R, Puigserver P, Li X, Dyson NJ, Hart AC, Naar AM (2010) Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24:1403–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW, Ericsson J (2005) Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 1:379–391

    Article  CAS  PubMed  Google Scholar 

  78. Villagra A, Ulloa N, Zhang X, Yuan Z, Sotomayor E, Seto E (2007) Histone deacetylase 3 down-regulates cholesterol synthesis through repression of lanosterol synthase gene expression. J Biol Chem 282:35457–35470

    Article  CAS  PubMed  Google Scholar 

  79. Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW (2008) Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J 27:1017–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dietschy JM, Turley SD (2002) Control of cholesterol turnover in the mouse. J Biol Chem 277:3801–3804

    Article  CAS  PubMed  Google Scholar 

  81. Dietschy JM (2009) Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem 390:287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Owen CG, Whincup PH, Odoki K, Gilg JA, Cook DG (2002) Infant feeding and blood cholesterol: a study in adolescents and a systematic review. Pediatrics 110:597–608

    Article  PubMed  Google Scholar 

  83. Ravelli AC, van der Meulen JH, Osmond C, Barker DJ, Bleker OP (2000) Infant feeding and adult glucose tolerance, lipid profile, blood pressure, and obesity. Arch Dis Child 82:248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marmot MG, Page CM, Atkins E, Douglas JW (1980) Effect of breast-feeding on plasma cholesterol and weight in young adults. J Epidemiol Community Health 34:164–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reiser R, Sidelman Z (1972) Control of serum cholesterol homeostasis by cholesterol in the milk of the suckling rat. J Nutr 102:1009–1016

    CAS  PubMed  Google Scholar 

  86. Demmers TA, Jones PJ, Wang Y, Krug S, Creutzinger V, Heubi JE (2005) Effects of early cholesterol intake on cholesterol biosynthesis and plasma lipids among infants until 18 months of age. Pediatrics 115:1594–1601

    Article  PubMed  Google Scholar 

  87. Bayley TM, Alasmi M, Thorkelson T, Krug-Wispe S, Jones PJ, Bulani JL, Tsang RC (1998) Influence of formula versus breast milk on cholesterol synthesis rates in four-month-old infants. Pediatr Res 44:60–67

    Article  CAS  PubMed  Google Scholar 

  88. Cruz ML, Wong WW, Mimouni F, Hachey DL, Setchell KD, Klein PD, Tsang RC (1994) Effects of infant nutrition on cholesterol synthesis rates. Pediatr Res 35:135–140

    Article  CAS  PubMed  Google Scholar 

  89. Lucas A (1991) Programming by early nutrition in man. Ciba Found Symp 156:38–50; discussion 50–35

  90. Wong WW, Hachey DL, Insull W, Opekun AR, Klein PD (1993) Effect of dietary cholesterol on cholesterol synthesis in breast-fed and formula-fed infants. J Lipid Res 34:1403–1411

    CAS  PubMed  Google Scholar 

  91. Hahn P, Srubiski L (1990) Development of cholesterol metabolism: the effect of diet composition at weaning. Biol Neonate 58:1–7

    Article  CAS  PubMed  Google Scholar 

  92. Bayley TM, Alasmi M, Thorkelson T, Jones PJ, Corcoran J, Krug-Wispe S, Tsang RC (2002) Longer term effects of early dietary cholesterol level on synthesis and circulating cholesterol concentrations in human infants. Metabolism 51:25–33

    Article  CAS  PubMed  Google Scholar 

  93. Boehm G, Moro G, Muller DM, Muller H, Raffler G, Minoli I (1995) Fecal cholesterol excretion in preterm infants fed breast milk or formula with different cholesterol contents. Acta Paediatr 84:240–244

    Article  CAS  PubMed  Google Scholar 

  94. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K (2011) Child health, developmental plasticity, and epigenetic programming. Endocr Rev 32:159–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Young LE (2001) Imprinting of genes and the Barker hypothesis. Twin Res 4:307–317

    Article  CAS  PubMed  Google Scholar 

  97. Yoshida S, Wada Y (2005) Transfer of maternal cholesterol to embryo and fetus in pregnant mice. J Lipid Res 46:2168–2174

    Article  CAS  PubMed  Google Scholar 

  98. Baardman ME, Kerstjens-Frederikse WS, Berger RM, Bakker MK, Hofstra RM, Plosch T (2013) The role of maternal-fetal cholesterol transport in early fetal life: current insights. Biol Reprod 88:24

    Article  PubMed  CAS  Google Scholar 

  99. Edison RJ, Berg K, Remaley A, Kelley R, Rotimi C, Stevenson RE, Muenke M (2007) Adverse birth outcome among mothers with low serum cholesterol. Pediatrics 120:723–733

    Article  PubMed  Google Scholar 

  100. Sattar N, Greer IA, Galloway PJ, Packard CJ, Shepherd J, Kelly T, Mathers A (1999) Lipid and lipoprotein concentrations in pregnancies complicated by intrauterine growth restriction. J Clin Endocrinol Metab 84:128–130

    CAS  PubMed  Google Scholar 

  101. Pecks U, Brieger M, Schiessl B, Bauerschlag DO, Piroth D, Bruno B, Fitzner C, Orlikowsky T, Maass N, Rath W (2012) Maternal and fetal cord blood lipids in intrauterine growth restriction. J Perinat Med 40:287–296

    CAS  PubMed  Google Scholar 

  102. Small M, Cameron A, Lunan CB, MacCuish AC (1987) Macrosomia in pregnancy complicated by insulin-dependent diabetes mellitus. Diabetes Care 10:594–599

    Article  CAS  PubMed  Google Scholar 

  103. Merzouk H, Madani S, Prost J, Loukidi B, Meghelli-Bouchenak M, Belleville J (1999) Changes in serum lipid and lipoprotein concentrations and compositions at birth and after 1 month of life in macrosomic infants of insulin-dependent diabetic mothers. Eur J Pediatr 158:750–756

    Article  CAS  PubMed  Google Scholar 

  104. Merzouk H, Madani S, Boualga A, Prost J, Bouchenak M, Belleville J (2001) Age-related changes in cholesterol metabolism in macrosomic offspring of rats with streptozotocin-induced diabetes. J Lipid Res 42:1152–1159

    CAS  PubMed  Google Scholar 

  105. Chmurzynska A, Stachowiak M, Gawecki J, Pruszynska-Oszmalek E, Tubacka M (2012) Protein and folic acid content in the maternal diet determine lipid metabolism and response to high-fat feeding in rat progeny in an age-dependent manner. Genes Nutr 7:223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bocci V (1992) The neglected organ: bacterial flora has a crucial immunostimulatory role. Perspect Biol Med 35:251–260

    Article  CAS  PubMed  Google Scholar 

  109. Gerard P (2013) Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3:14–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Martinez I, Perdicaro DJ, Brown AW, Hammons S, Carden TJ, Carr TP, Eskridge KM, Walter J (2013) Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl Environ Microbiol 79:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K (2010) Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 1801:1175–1183

    Article  CAS  PubMed  Google Scholar 

  112. Kaddurah-Daouk R, Baillie RA, Zhu H, Zeng ZB, Wiest MM, Nguyen UT, Wojnoonski K, Watkins SM, Trupp M, Krauss RM (2011) Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One 6:e25482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Miettinen TA, Gylling H (2003) Synthesis and absorption markers of cholesterol in serum and lipoproteins during a large dose of statin treatment. Eur J Clin Investig 33:976–982

    Article  CAS  Google Scholar 

  114. Miettinen TA, Gylling H, Lindbohm N, Miettinen TE, Rajaratnam RA, Relas H (2003) Serum noncholesterol sterols during inhibition of cholesterol synthesis by statins. J Lab Clin Med 141:131–137

    Article  CAS  PubMed  Google Scholar 

  115. Casals-Casas C, Desvergne B (2011) Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol 73:135–162

    Article  CAS  PubMed  Google Scholar 

  116. Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, Ma T, Pesenti S, Sonne SB, Marstrand TT, Malde MK, Du ZY, Chavey C, Fajas L, Lundebye AK, Brand CL, Vidal H, Kristiansen K, Froyland L (2010) Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect 118:465–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219

    Article  CAS  PubMed  Google Scholar 

  118. Mozzicafreddo M, Cuccioloni M, Bonfili L, Cecarini V, Palermo FA, Cocci P, Mosconi G, Capone A, Ricci I, Eleuteri AM, Angeletti M (2015) Environmental pollutants directly affect the liver X receptor alpha activity: kinetic and thermodynamic characterization of binding. J Steroid Biochem Mol Biol 152:1–7

    Article  CAS  PubMed  Google Scholar 

  119. Wang DQ (2007) Regulation of intestinal cholesterol absorption. Annu Rev Physiol 69:221–248

    Article  CAS  PubMed  Google Scholar 

  120. Grundy SM, Metzger AL (1972) A physiological method for estimation of hepatic secretion of biliary lipids in man. Gastroenterology 62:1200–1217

    CAS  PubMed  Google Scholar 

  121. Arnesjo B, Nilsson A, Barrowman J, Borgstrom B (1969) Intestinal digestion and absorption of cholesterol and lecithin in the human. Intubation studies with a fat-soluble reference substance. Scand J Gastroenterol 4:653–665

    Article  CAS  PubMed  Google Scholar 

  122. Borgstrom B (1960) Studies on intestinal cholesterol absorption in the human. J Clin Investig 39:809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sudhop T, Lutjohann D, Kodal A, Igel M, Tribble DL, Shah S, Perevozskaya I, von Bergmann K (2002) Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 106:1943–1948

    Article  CAS  PubMed  Google Scholar 

  124. Woollett LA, Wang Y, Buckley DD, Yao L, Chin S, Granholm N, Jones PJ, Setchell KD, Tso P, Heubi JE (2006) Micellar solubilisation of cholesterol is essential for absorption in humans. Gut 55:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. van der Wulp MY, Verkade HJ, Groen AK (2013) Regulation of cholesterol homeostasis. Mol Cell Endocrinol 368:1–16

    Article  PubMed  CAS  Google Scholar 

  126. Bitman J, Wood DL (1980) Cholesterol and cholesteryl esters of eggs from various avian species. Poult Sci 59:2014–2023

    Article  CAS  Google Scholar 

  127. Weng W, Li L, van Bennekum AM, Potter SH, Harrison EH, Blaner WS, Breslow JL, Fisher EA (1999) Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice. Biochemistry 38:4143–4149

    Article  CAS  PubMed  Google Scholar 

  128. Kirby RJ, Zheng S, Tso P, Howles PN, Hui DY (2002) Bile salt-stimulated carboxyl ester lipase influences lipoprotein assembly and secretion in intestine: a process mediated via ceramide hydrolysis. J Biol Chem 277:4104–4109

    Article  CAS  PubMed  Google Scholar 

  129. Wilson MD, Rudel LL (1994) Review of cholesterol absorption with emphasis on dietary and biliary cholesterol. J Lipid Res 35:943–955

    CAS  PubMed  Google Scholar 

  130. Davis HR Jr, Altmann SW (2009) Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta 1791:679–683

    Article  CAS  PubMed  Google Scholar 

  131. Davis HR Jr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SP, Lam MH, Lund EG, Detmers PA, Graziano MP, Altmann SW (2004) Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279:33586–33592

    Article  CAS  PubMed  Google Scholar 

  132. Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, Wang L, Murgolo N, Graziano MP (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204

    Article  CAS  PubMed  Google Scholar 

  133. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775

    Article  CAS  PubMed  Google Scholar 

  134. Lee RG, Willingham MC, Davis MA, Skinner KA, Rudel LL (2000) Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J Lipid Res 41:1991–2001

    CAS  PubMed  Google Scholar 

  135. Gordon DA, Jamil H (2000) Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim Biophys Acta 1486:72–83

    Article  CAS  PubMed  Google Scholar 

  136. Brunham LR, Kruit JK, Iqbal J, Fievet C, Timmins JM, Pape TD, Coburn BA, Bissada N, Staels B, Groen AK, Hussain MM, Parks JS, Kuipers F, Hayden MR (2006) Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Investig 116:1052–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Grundy SM, Ahrens EH Jr (1969) Measurements of cholesterol turnover, synthesis, and absorption in man, carried out by isotope kinetic and sterol balance methods. J Lipid Res 10:91–107

    CAS  PubMed  Google Scholar 

  138. Bosner MS, Lange LG, Stenson WF, Ostlund RE Jr (1999) Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J Lipid Res 40:302–308

    CAS  PubMed  Google Scholar 

  139. Gremaud G, Piguet C, Baumgartner M, Pouteau E, Decarli B, Berger A, Fay LB (2001) Simultaneous assessment of cholesterol absorption and synthesis in humans using on-line gas chromatography/combustion and gas chromatography/pyrolysis/isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 15:1207–1213

    Article  CAS  PubMed  Google Scholar 

  140. Jones PJ, Raeini-Sarjaz M, Ntanios FY, Vanstone CA, Feng JY, Parsons WE (2000) Modulation of plasma lipid levels and cholesterol kinetics by phytosterol versus phytostanol esters. J Lipid Res 41:697–705

    CAS  PubMed  Google Scholar 

  141. Tilvis RS, Miettinen TA (1986) Serum plant sterols and their relation to cholesterol absorption. Am J Clin Nutr 43:92–97

    CAS  PubMed  Google Scholar 

  142. Schwarz M, Russell DW, Dietschy JM, Turley SD (1998) Marked reduction in bile acid synthesis in cholesterol 7alpha-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J Lipid Res 39:1833–1843

    CAS  PubMed  Google Scholar 

  143. Schwarz M, Russell DW, Dietschy JM, Turley SD (2001) Alternate pathways of bile acid synthesis in the cholesterol 7alpha-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. J Lipid Res 42:1594–1603

    CAS  PubMed  Google Scholar 

  144. Voshol PJ, Havinga R, Wolters H, Ottenhoff R, Princen HM, Oude Elferink RP, Groen AK, Kuipers F (1998) Reduced plasma cholesterol and increased fecal sterol loss in multidrug resistance gene 2 P-glycoprotein-deficient mice. Gastroenterology 114:1024–1034

    Article  CAS  PubMed  Google Scholar 

  145. Wang DQ, Tazuma S, Cohen DE, Carey MC (2003) Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am J Physiol Gastrointest Liver Physiol 285:G494–G502

    Article  CAS  PubMed  Google Scholar 

  146. Wang DQ, Paigen B, Carey MC (2001) Genetic factors at the enterocyte level account for variations in intestinal cholesterol absorption efficiency among inbred strains of mice. J Lipid Res 42:1820–1830

    CAS  PubMed  Google Scholar 

  147. Di Ciaula A, Wang DQ, Bonfrate L, Portincasa P (2013) Current views on genetics and epigenetics of cholesterol gallstone disease. Cholesterol 2013:298421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Wang HH, Afdhal NH, Gendler SJ, Wang DQ (2004) Lack of the intestinal Muc1 mucin impairs cholesterol uptake and absorption but not fatty acid uptake in Muc1−/− mice. Am J Physiol Gastrointest Liver Physiol 287:G547–G554

    Article  CAS  PubMed  Google Scholar 

  149. Kirby RJ, Howles PN, Hui DY (2004) Rate of gastric emptying influences dietary cholesterol absorption efficiency in selected inbred strains of mice. J Lipid Res 45:89–98

    Article  CAS  PubMed  Google Scholar 

  150. Huggins KW, Camarota LM, Howles PN, Hui DY (2003) Pancreatic triglyceride lipase deficiency minimally affects dietary fat absorption but dramatically decreases dietary cholesterol absorption in mice. J Biol Chem 278:42899–42905

    Article  CAS  PubMed  Google Scholar 

  151. Boucher P, de Lorgeril M, Salen P, Crozier P, Delaye J, Vallon JJ, Geyssant A, Dante R (1998) Effect of dietary cholesterol on low density lipoprotein-receptor, 3-hydroxy-3-methylglutaryl-CoA reductase, and low density lipoprotein receptor-related protein mRNA expression in healthy humans. Lipids 33:1177–1186

    Article  CAS  PubMed  Google Scholar 

  152. Shekelle RB, Shryock AM, Paul O, Lepper M, Stamler J, Liu S, Raynor WJ Jr (1981) Diet, serum cholesterol, and death from coronary heart disease. The Western Electric study. N Engl J Med 304:65–70

    Article  CAS  PubMed  Google Scholar 

  153. McGee DL, Reed DM, Yano K, Kagan A, Tillotson J (1984) Ten-year incidence of coronary heart disease in the Honolulu Heart Program. Relationship to nutrient intake. Am J Epidemiol 119:667–676

    CAS  PubMed  Google Scholar 

  154. Stamler J, Shekelle R (1988) Dietary cholesterol and human coronary heart disease. The epidemiologic evidence. Arch Pathol Lab Med 112:1032–1040

    CAS  PubMed  Google Scholar 

  155. Kratz M (2005) Dietary cholesterol, atherosclerosis and coronary heart disease. In: von Eckardstein A (ed) Atherosclerosis: Diet and Drugs. Handbook of Experimental Pharmacology, vol 170. Springer, Berlin, Heidelberg, pp 195–213

  156. Beynen AC, Katan MB, Van Zutphen LF (1987) Hypo- and hyperresponders: individual differences in the response of serum cholesterol concentration to changes in diet. Adv Lipid Res 22:115–171

    CAS  PubMed  Google Scholar 

  157. Carr TP, Jesch ED (2006) Food components that reduce cholesterol absorption. Adv Food Nutr Res 51:165–204

    Article  CAS  PubMed  Google Scholar 

  158. Gunness P, Gidley MJ (2010) Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct 1:149–155

    Article  CAS  PubMed  Google Scholar 

  159. Weihrauch J, Son Y-S (1983) Phospholipid content of foods. J Am Oil Chem Soc 60:1971–1978

    Article  CAS  Google Scholar 

  160. Cohn JS, Kamili A, Wat E, Chung RW, Tandy S (2010) Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Beil FU, Grundy SM (1980) Studies on plasma lipoproteins during absorption of exogenous lecithin in man. J Lipid Res 21:525–536

    CAS  PubMed  Google Scholar 

  162. Abumweis SS, Barake R, Jones PJ (2008) Plant sterols/stanols as cholesterol lowering agents: a meta-analysis of randomized controlled trials. Food Nutr Res 52:1–17

    Article  Google Scholar 

  163. Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    Article  CAS  PubMed  Google Scholar 

  164. Berger A, Jones PJ, Abumweis SS (2004) Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipids Health Dis 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  165. Demonty I, Ras RT, van der Knaap HC, Duchateau GS, Meijer L, Zock PL, Geleijnse JM, Trautwein EA (2009) Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J Nutr 139:271–284

    Article  CAS  PubMed  Google Scholar 

  166. Musa-Veloso K, Poon TH, Elliot JA, Chung C (2011) A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins Leukot Essent Fatty Acids 85:9–28

    Article  CAS  PubMed  Google Scholar 

  167. Temel RE, Gebre AK, Parks JS, Rudel LL (2003) Compared with Acyl-CoA:cholesterol O-acyltransferase (ACAT) 1 and lecithin:cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol. J Biol Chem 278:47594–47601

    Article  CAS  PubMed  Google Scholar 

  168. Gylling H, Radhakrishnan R, Miettinen TA (1997) Reduction of serum cholesterol in postmenopausal women with previous myocardial infarction and cholesterol malabsorption induced by dietary sitostanol ester margarine: women and dietary sitostanol. Circulation 96:4226–4231

    Article  CAS  PubMed  Google Scholar 

  169. Vanstone CA, Raeini-Sarjaz M, Parsons WE, Jones PJ (2002) Unesterified plant sterols and stanols lower LDL-cholesterol concentrations equivalently in hypercholesterolemic persons. Am J Clin Nutr 76:1272–1278

    CAS  PubMed  Google Scholar 

  170. Jakulj L, Trip MD, Sudhop T, von Bergmann K, Kastelein JJ, Vissers MN (2005) Inhibition of cholesterol absorption by the combination of dietary plant sterols and ezetimibe: effects on plasma lipid levels. J Lipid Res 46:2692–2698

    Article  CAS  PubMed  Google Scholar 

  171. Mackay DS, Gebauer SK, Eck PK, Baer DJ, Jones PJ (2015) Lathosterol-to-cholesterol ratio in serum predicts cholesterol-lowering response to plant sterol consumption in a dual-center, randomized, single-blind placebo-controlled trial. Am J Clin Nutr 101:432–439

    Article  CAS  PubMed  Google Scholar 

  172. Berge KE, von Bergmann K, Lutjohann D, Guerra R, Grundy SM, Hobbs HH, Cohen JC (2002) Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. J Lipid Res 43:486–494

    CAS  PubMed  Google Scholar 

  173. Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, Kojima H, Allikmets R, Sakuma N, Pegoraro R, Srivastava AK, Salen G, Dean M, Patel SB (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 27:79–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bhattacharyya AK, Connor WE (1974) Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Investig 53:1033–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Miettinen TA (1980) Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. Eur J Clin Investig 10:27–35

    Article  CAS  Google Scholar 

  176. Salen G, Tint GS, Shefer S, Shore V, Nguyen L (1992) Increased sitosterol absorption is offset by rapid elimination to prevent accumulation in heterozygotes with sitosterolemia. Arterioscler Thromb 12:563–568

    Article  CAS  PubMed  Google Scholar 

  177. Salen G, Shore V, Tint GS, Forte T, Shefer S, Horak I, Horak E, Dayal B, Nguyen L, Batta AK et al (1989) Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis. J Lipid Res 30:1319–1330

    CAS  PubMed  Google Scholar 

  178. Rideout TC, Chan YM, Harding SV, Jones PJ (2009) Low and moderate-fat plant sterol fortified soymilk in modulation of plasma lipids and cholesterol kinetics in subjects with normal to high cholesterol concentrations: report on two randomized crossover studies. Lipids Health Dis 8:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Rideout TC, Harding SV, Mackay D, Abumweis SS, Jones PJ (2010) High basal fractional cholesterol synthesis is associated with nonresponse of plasma LDL cholesterol to plant sterol therapy. Am J Clin Nutr 92:41–46

    Article  CAS  PubMed  Google Scholar 

  180. Fuentes F, Lopez-Miranda J, Garcia A, Perez-Martinez P, Moreno J, Cofan M, Caballero J, Paniagua JA, Ros E, Perez-Jimenez F (2008) Basal plasma concentrations of plant sterols can predict LDL-C response to sitosterol in patients with familial hypercholesterolemia. Eur J Clin Nutr 62:495–501

    Article  CAS  PubMed  Google Scholar 

  181. Mussner MJ, Parhofer KG, Von Bergmann K, Schwandt P, Broedl U, Otto C (2002) Effects of phytosterol ester-enriched margarine on plasma lipoproteins in mild to moderate hypercholesterolemia are related to basal cholesterol and fat intake. Metabolism 51:189–194

    Article  CAS  PubMed  Google Scholar 

  182. Jeu L, Cheng JW (2003) Pharmacology and therapeutics of ezetimibe (SCH 58235), a cholesterol-absorption inhibitor. Clin Ther 25:2352–2387

    Article  CAS  PubMed  Google Scholar 

  183. Davies JP, Scott C, Oishi K, Liapis A, Ioannou YA (2005) Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem 280:12710–12720

    Article  CAS  PubMed  Google Scholar 

  184. Greene CM, Zern TL, Wood RJ, Shrestha S, Aggarwal D, Sharman MJ, Volek JS, Fernandez ML (2005) Maintenance of the LDL cholesterol:HDL cholesterol ratio in an elderly population given a dietary cholesterol challenge. J Nutr 135:2793–2798

    CAS  PubMed  Google Scholar 

  185. Rantala M, Rantala TT, Savolainen MJ, Friedlander Y, Kesaniemi YA (2000) Apolipoprotein B gene polymorphisms and serum lipids: meta-analysis of the role of genetic variation in responsiveness to diet. Am J Clin Nutr 71:713–724

    CAS  PubMed  Google Scholar 

  186. Masson LF, McNeill G, Avenell A (2003) Genetic variation and the lipid response to dietary intervention: a systematic review. Am J Clin Nutr 77:1098–1111

    CAS  PubMed  Google Scholar 

  187. Gylling H, Kontula K, Miettinen TA (1995) Cholesterol absorption and metabolism and LDL kinetics in healthy men with different apoprotein E phenotypes and apoprotein B Xba I and LDL receptor Pvu II genotypes. Arterioscler Thromb Vasc Biol 15:208–213

    Article  CAS  PubMed  Google Scholar 

  188. Kesaniemi YA, Ehnholm C, Miettinen TA (1987) Intestinal cholesterol absorption efficiency in man is related to apoprotein E phenotype. J Clin Investig 80:578–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Miettinen TA, Gylling H, Vanhanen H, Ollus A (1992) Cholesterol absorption, elimination, and synthesis related to LDL kinetics during varying fat intake in men with different apoprotein E phenotypes. Arterioscler Thromb 12:1044–1052

    Article  CAS  PubMed  Google Scholar 

  190. Sarkkinen E, Korhonen M, Erkkila A, Ebeling T, Uusitupa M (1998) Effect of apolipoprotein E polymorphism on serum lipid response to the separate modification of dietary fat and dietary cholesterol. Am J Clin Nutr 68:1215–1222

    CAS  PubMed  Google Scholar 

  191. Apfelbaum M (1992) What is the nutritional value of cholesterol-free butter consumption? Rev Prat 42:1925–1926

    CAS  PubMed  Google Scholar 

  192. De Castro-Oros I, Pampin S, Cofan M, Mozas P, Pinto X, Salas-Salvado J, Rodriguez-Rey JC, Ros E, Civeira F, Pocovi M (2011) Promoter variant -204A > C of the cholesterol 7alpha-hydroxylase gene: association with response to plant sterols in humans and increased transcriptional activity in transfected HepG2 cells. Clin Nutr 30:239–246

    Article  PubMed  CAS  Google Scholar 

  193. MacKay DS, Eck PK, Gebauer SK, Baer DJ, Jones PJ (2015) CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol lowering after plant sterol consumption in a randomized clinical trial. Am J Clin Nutr 102:951–957

    Article  CAS  PubMed  Google Scholar 

  194. Sehayek E, Yu HJ, von Bergmann K, Lutjohann D, Stoffel M, Duncan EM, Garcia-Naveda L, Salit J, Blundell ML, Friedman JM, Breslow JL (2004) Phytosterolemia on the island of Kosrae: founder effect for a novel ABCG8 mutation results in high carrier rate and increased plasma plant sterol levels. J Lipid Res 45:1608–1613

    Article  CAS  PubMed  Google Scholar 

  195. Cohen JC, Pertsemlidis A, Fahmi S, Esmail S, Vega GL, Grundy SM, Hobbs HH (2006) Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci USA 103:1810–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hegele RA, Guy J, Ban MR, Wang J (2005) NPC1L1 haplotype is associated with inter-individual variation in plasma low-density lipoprotein response to ezetimibe. Lipids Health Dis 4:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Buhman KK, Accad M, Novak S, Choi RS, Wong JS, Hamilton RL, Turley S, Farese RV Jr (2000) Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 6:1341–1347

    Article  CAS  PubMed  Google Scholar 

  198. Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ, Sinal CJ (2003) The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J Biol Chem 278:2563–2570

    Article  CAS  PubMed  Google Scholar 

  199. Ahola-Olli AV, Pitkanen N, Kettunen J, Oikonen MK, Mikkila V, Lehtimaki T, Kahonen M, Pahkala K, Niinikoski H, Kangas AJ, Soininen P, Ala-Korpela M, Viikari JS, Ronnemaa T, Simell O, Raitakari OT (2014) Interactions between genetic variants and dietary lipid composition: effects on circulating LDL cholesterol in children. Am J Clin Nutr 100:1569–1577

    Article  CAS  PubMed  Google Scholar 

  200. Plat J, Mensink RP (2002) Relationship of genetic variation in genes encoding apolipoprotein A-IV, scavenger receptor BI, HMG-CoA reductase, CETP and apolipoprotein E with cholesterol metabolism and the response to plant stanol ester consumption. Eur J Clin Investig 32:242–250

    Article  CAS  Google Scholar 

  201. Zhao HL, Houweling AH, Vanstone CA, Jew S, Trautwein EA, Duchateau GS, Jones PJ (2008) Genetic variation in ABC G5/G8 and NPC1L1 impact cholesterol response to plant sterols in hypercholesterolemic men. Lipids 43:1155–1164

    Article  CAS  PubMed  Google Scholar 

  202. Rudkowska I, AbuMweis SS, Nicolle C, Jones PJ (2008) Association between non-responsiveness to plant sterol intervention and polymorphisms in cholesterol metabolism genes: a case-control study. Appl Physiol Nutr Metab 33:728–734

    Article  CAS  PubMed  Google Scholar 

  203. Rideout TC, Harding SV, Mackay DS (2012) Metabolic and genetic factors modulating subject specific LDL-C responses to plant sterol therapy. Can J Physiol Pharmacol 90:509–514

    Article  CAS  PubMed  Google Scholar 

  204. Malhotra P, Soni V, Kumar A, Anbazhagan AN, Dudeja A, Saksena S, Gill RK, Dudeja PK, Alrefai WA (2014) Epigenetic modulation of intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) gene expression by DNA methylation. J Biol Chem 289:23132–23140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251

    Article  CAS  PubMed  Google Scholar 

  206. Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21

    Article  CAS  PubMed  Google Scholar 

  207. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cheverud JM, Routman EJ (1995) Epistasis and its contribution to genetic variance components. Genetics 139:1455–1461

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Cordell HJ (2009) Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet 10:392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ma L, Brautbar A, Boerwinkle E, Sing CF, Clark AG, Keinan A (2012) Knowledge-driven analysis identifies a gene–gene interaction affecting high-density lipoprotein cholesterol levels in multi-ethnic populations. PLoS Genet 8:e1002714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Jones ML, Martoni CJ, Ganopolsky JG, Labbe A, Prakash S (2014) The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opin Biol Ther 14:467–482

    Article  CAS  PubMed  Google Scholar 

  212. De Smet I, Hoorde LV, Saeyer ND, Woestyne MV, Verstraete W (1994) In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb Ecol Health Disease 7:315–329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. S. Alphonse.

Ethics declarations

Conflict of interest

None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alphonse, P.A.S., Jones, P.J.H. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 51, 519–536 (2016). https://doi.org/10.1007/s11745-015-4096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-015-4096-7

Keywords

Navigation