Skip to main content
Log in

Synthesis, Characterization, and Evaluation of Ethoxylated Lauryl-Myrisityl Alcohol Nonionic Surfactants as Wetting Agents, Anti-Foamers, and Minimum Film Forming Temperature Reducers in Emulsion Polymer Lattices

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Two nonionic FAEO (fatty alcohol ethoxylated) surfactants with varying solubility were obtained by the reaction of lauryl-myrisityl alcohol (LMA) with ethylene oxide to yield lauryl-myristyl/alcohol ethoxylated with 3 and 31 mol of ethylene oxide by changing the length of polyethylene glycol segment. The prepared surfactants, designated as LMAEO-3 and LMAEO-31, were characterized for their structures using spectroscopic measurements; in addition, their surface properties were investigated. The results indicated that LMAEO-31 exhibits excellent surface activity. Evaluation of the surfactants as wetting agents, anti-foamers, and minimum film forming temperature (MFFT) reducer in emulsion polymer lattices achieved promising results indicating high performance in the mentioned industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Edwards CL. Nonionic surfactants. Surfactant Sci Ser. 1998;72:87–121.

    CAS  Google Scholar 

  2. Schick MJ. Nonionic surfactants. New York: Marcel Dekker; 1966.

    Google Scholar 

  3. Schick MJ. Nonionic surfactants: physical chemistry. New York: Marcel Dekker; 1987. p. 438.

    Google Scholar 

  4. Schonfeldt N. Surface active ethylene oxide adducts. Oxford: Pergamon Press; 1970.

    Google Scholar 

  5. Van Os NM. Nonionic surfactants: organic chemistry. Surfactant science series, vol. 72. New York: Marcel Dekker Inc; 1998. p. vii–x.

    Google Scholar 

  6. Porter MR. Handbook of surfactants. 2nd ed. New York: Blackie; 1994.

    Book  Google Scholar 

  7. Kirshenbaum I, Inchalik EJ. In: Grayson M, Eckroth D, editors. Kirk-Othmer encyclopedia of chemical technology. 3rd ed. vol. 16, New York: John Wiley & Sons;1981. p. 637–53.

  8. Gautreaux MF, Davis WT, Travis ED (1978) In: Grayson M, Eckroth D (eds) Kirk-othmer encyclopedia of chemical technology. 3rd ed., vol. 1, New York: John Wiley & Sons; p. 740–754.

  9. Santacesaria E, Di Serio M, Garaffa R. Kinetics and mechanisms of fatty alcohol polyethoxylation. 1. The reaction catalyzed by potassium hydroxide. Ind Eng Chem Res. 1992;31:2413–8.

    Article  CAS  Google Scholar 

  10. Li JL, Chen BH. Recovering phenanthrene from spiked sand by a combined remediation process of micellar solubilization and cloud-point extraction. J Chin Inst Chem Eng, 2008;39:337–42.

    Article  Google Scholar 

  11. Kenkare PU, Hall CK, Kilpatrick PK. The effects of salts on the lower consolute boundary of a nonionic micellar solution. J. Colloid Interf Sci. 1996;184:456–68.

    Article  CAS  Google Scholar 

  12. Schott H. Effect of inorganic additives on solutions of nonionic surfactants—XVI. Limiting cloud points of highly polyoxyethylated surfactants. Colloid Surf A. 2001;186:129–36.

    Article  CAS  Google Scholar 

  13. Huang Z, Gu T. The effect of mixed cationic-anionic surfactants on the cloud point of nonionic surfactant. J Colloid Interf Sci. 1990;138:580–2.

    Article  CAS  Google Scholar 

  14. Kumar S, Sharma D, Khan ZA, Kabir-ud-Din. Salt-induced cloud point in anionic surfactant solutions: role of the headgroup and additives. Langmuir. 2002;18:4205–9.

    Article  CAS  Google Scholar 

  15. Van Os NM, Haak JR, Rupert LAM. Physico-chemical properties of selected anionic, cationic and nonionic surfactants. Amsterdam: Elsevier; 1993.

    Google Scholar 

  16. Hsiao L, Dunning HN, Lorenz PB. Critical micelle concentrations of polyoxyethylated non-ionic detergents. J Phys Chem. 1956;60:657–60.

    Article  CAS  Google Scholar 

  17. Balson T, Felix MSB. The biodegradability of non-ionic surfactants. In: Karsa DR, Porter MR, editors. Biodegradability of surfactants. London: Blackie Academic and Professional; 1995. p. 204–30.

    Chapter  Google Scholar 

  18. Alejski K, Bialowas E, Hreczuch W, Trathnigg P, Szymanowski J. Oxyethylation of fatty acid methyl esters. Molar ratio and temperature effects. Pressure drop modeling. Ind Eng Chem Res. 2003;42:2924–33.

    Article  CAS  Google Scholar 

  19. Negm NA, Elkholy YM, Ghuiba FM, Zahran MK, Mahmoud SA, Tawfik SM. Benzothiazol-3-ium cationic schiff base surfactants: synthesis, surface activity and antimicrobial applications against pathogenic and sulfur reducing bacteria in oil fields. J Dispers Sci Technol. 2011;32:512–8.

    Article  CAS  Google Scholar 

  20. ASTM D2024-09 (2009) Standard test method for cloud point of nonionic surfactants. ASTM International, West Conshohocken. www.astm.org.

  21. ASTM D1173-07 (2007) Standard test method for foaming properties of surface-active agents. ASTM International, West Conshohocken. www.astm.org.

  22. Denkov ND. Mechanisms of foam destruction by oil-based antifoams. Langmuir. 2004;20:9463–505.

    Article  CAS  Google Scholar 

  23. Saito Y, Sato T, Anazawa I. Correlation between distribution of oxyethylene chain and physicochemical properties of nonionic surfactants. Yakuzaigaku. 1989;49:180–3.

    CAS  Google Scholar 

  24. Zheng J, Luo J, Zhou D, Shen T, Li H, Liang L, Lu M. Preparation and properties of non-ionic polyurethane surfactants. Colloids and Surfaces A: physicochem. Eng Aspects. 2010;363:16–21.

    Article  CAS  Google Scholar 

  25. ASTM D2281-10 (2010) Standard test method for evaluation of wetting agents by the skein test. ASTM International, West Conshohocken. www.astm.org.

  26. Draves CZ, Clarkson RG. A new method for the evaluation of wetting agents. Am Dyest Rep. 1931;20:201–9.

    CAS  Google Scholar 

  27. Ananthapadmanabhan KP, Goddard ED, Chandar P. A study of the solution, interfacial and wetting properties of silicone surfactants. Colloids Surf. 1990;44:281–97.

    Article  CAS  Google Scholar 

  28. Rosen MJ, Song LD. Superspreading, skein wetting, and dynamic surface tension. Langmuir. 1996;12:4945–9.

    Article  CAS  Google Scholar 

  29. Arnaudov L, Denkov ND, Surcheva I, Durbut P, Broze G, Mehreteab A. Effect of oily additives on the foam ability and foam stability. 1. Role of interfacial properties. Langmuir. 2001;17:6999–7010.

    Article  CAS  Google Scholar 

  30. Basheva ES, Ganchev D, Denkov ND, Kasuga K, Satoh N, Tsujii K. Role of betaine as foam booster in the presence of silicone oil drops. Langmuir. 2000;16:1000–13.

    Article  CAS  Google Scholar 

  31. Wasan DT, Christiano SP (1997) Foams and antifoams: a thin film approach. In: Birdi KS (ed.) Handbook of surface and colloid chemistry. CRC Press, New York, Chapter 6.

  32. Denkov ND, Marinova K, Hristova H, Hadjiiski A, Cooper P. Mechanisms of action of mixed solid-liquid antifoams. 3. Exhaustion and reactivation. Langmuir. 2000;16:2515–28.

    Article  CAS  Google Scholar 

  33. ASTM D2354-10e1 (2010) Standard test method for minimum film formation temperature (MFFT) of Emulsion Vehicles. ASTM International, West Conshohocken, PA. www.astm.org.

  34. Hall CA, Agrawal PK. Separation of kinetics and mass-transfer in a batch alkoxylation reaction. Can J Chem Eng. 1990;68:104–12.

    Article  CAS  Google Scholar 

  35. Reichenbächer M, Popp J. Challenges in molecular structure determination. Chapter 2 Vibrational Spectroscopy. Berlin Heidelberg: Springer-Verlag; 2012.

    Book  Google Scholar 

  36. Negm NA, Mohamed AS. Surface and thermodynamic properties of diquaternary bola-form amphiphiles containing an aromatic spacer. J Surf Deterg. 2004;7:23–30.

    Article  CAS  Google Scholar 

  37. Griffin WC. Classification of surface-active agents by “HLB”. J Soc Cosmet Chem. 1949;1:311–26.

    Google Scholar 

  38. Griffin WC. Emulsification. Sagarin E. New York: Cosmetics: Science and Technology Interscience Publishers; 1957. p. 998–1033.

    Google Scholar 

  39. Schott H. Hydrophile-lipophile balance and cloud points of nonionic surfactants. J Pharm Sci. 1969;58:1443–9.

    Article  CAS  Google Scholar 

  40. Rosen MJ (1984) Structure/Performance Relationships in Surfactants (ed.) American Chemical Society, Washington.

  41. Al-Sabagh AM, Ahmed NS, Nassar AM, Gabr MM. Synthesis and evaluation of some polymeric surfactants for treating crude oil emulsions Part I: treatment of sandy soil polluted with crude oil by monomeric and polymeric surfactants. Colloids Surf A physicochem Eng Aspects. 2003;216:9–19.

    Article  CAS  Google Scholar 

  42. Tadros TF. Applied Surfactants: Principles and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2005.

    Book  Google Scholar 

  43. Xu Q, Wang L, Xing F. Synthesis and properties of dissymmetric gemini surfactants. J Surfact Deterg. 2011;14:85–90.

    Article  CAS  Google Scholar 

  44. Denkov ND, Marinova K, Tcholakova S, Deruelle M (2002) Mechanism of foam destruction by emulsions of PDMS-silica mixtures. In: Proceedings 3rd World Congress on Emulsions, 24–27, Lyon, France; paper 1-D-199.

  45. Garrett PR (1993) The mode of action of antifoams. In: Garrett PR (ed) defoaming: theory and industrial applications, Marcel Dekker: New York, Chapter 1.

  46. Erbil HY. Vinyl Acetate Copolymerization with Acrylic Monomers. In vinyl acetate emulsion polymerization and copolymerization with acrylic monomers: CRC Press; 2000 Chapter 5.

    Book  Google Scholar 

  47. Winnik MA. The formation and properties of latex films. In: El-Aasser MS, Lovell PA, editors. Emulsion polymerization and emulsion polymers. London: Wiley; 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abd El-Ghaffar.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Ghaffar, M.A., Sherif, M.H. & Taher El-Habab, A. Synthesis, Characterization, and Evaluation of Ethoxylated Lauryl-Myrisityl Alcohol Nonionic Surfactants as Wetting Agents, Anti-Foamers, and Minimum Film Forming Temperature Reducers in Emulsion Polymer Lattices. J Surfact Deterg 20, 117–128 (2017). https://doi.org/10.1007/s11743-016-1898-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-016-1898-4

Keywords

Navigation