Skip to main content

Advertisement

Log in

Physiological responses of wheat to drought stress and its mitigation approaches

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Drought is a polygenically controlled stress and a major agricultural risk that reduces crop productivity and limits the successful insight of land potential throughout the world. This review article has been divided into two parts, i.e., effect of drought stress on physiology of wheat and potential drought mitigation approaches. In the first part, physiological responses of wheat to stress were discussed. Cell membrane stability, relative water content, early maturity, decreased leaf area, small plant size, increased dry weight and root–shoot ratio, and the whole-plant transpiration rate response to enhanced atmospheric vapor pressure deficit are physiological traits associated with drought tolerance in wheat. Reduction of relative water content closes stomata and thereby reduces stomatal conductance. Osmotic adjustment improves drought tolerance by allowing cell enlargement, plant growth, and stomata to stay partially open and by maintaining CO2 fixation under severe water deficit. The wheat plant accumulates several organic and inorganic solutes in its cytosol to lessen its osmotic potential for maintenance of cell turgor. Drought affects photosynthesis negatively by changing the inner structure of chloroplasts, mitochondria, and chlorophyll content and minerals. Destruction of the photosystem II (PSII) oxygen releasing complex and reaction center can disturb production and use of electrons, causing lipid peroxidation of cell membrane through the production of reactive oxygen species. In the second part, drought mitigation approaches were discussed. Seed, drought, bacterial, and hormonal priming are common approaches used to lessen the effects of water deficit. Physiological trait-based breeding, molecular breeding, marker-assisted backcrossing, aerial phenotyping, water budgeting, and resource allocation are modern approaches used to develop drought tolerant wheat cultivars. Wheat genotypes produced as a result of a combination of all these methodologies will increase food security regarding the currently changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abid M, Tian Z, Ata-Ul-Karim ST, Cui Y, Liu Y, Zahoor R, Jiang D, Dai T (2016) Nitrogen nutrition improves the potential of wheat (Triticum aestivum L.) to alleviate the effects of drought stress during vegetative growth periods. Front Plant Sci 7:981

    Article  PubMed  PubMed Central  Google Scholar 

  • Alaei Y (2011) The effect of amino acids on leaf chlorophyll content in bread wheat genotypes under drought stress conditions. Middle-East J Sci Res 10:99–101

    CAS  Google Scholar 

  • Almaghrabi OA (2012) Impact of drought stress on germination and seedling growth parameters of some wheat cultivars. Life Sci J 9:590–598

    Google Scholar 

  • Almeselmani M, Abdullah F, Hareri F, Naaesan M, Adel Ammar M, ZuherKanbar O, Alrzak Saud A (2011) Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat. J Agric Sci 3:127–133

    Google Scholar 

  • Aminzadeh G (2010) Evaluation of seed yield stability of wheat advanced genotypes in Ardabil, Iran. Res J Environ Sci. 4:478–482

    Article  Google Scholar 

  • Aown M, Raza S, Saleem MF, Anjum S, Khaliq T, Wahid M (2012) Foliar application of potassium under water deficit conditions improved the growth and yield of wheat (Triticum aestivum L.). J Anim Plant Sci 22:431–437

    Google Scholar 

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Arif M, Khan M, Akbar H, Sajjad Sajid A (2006) Prospects of wheat as a dual response crop and its impact on weeds. Pak J weed Sci Res 12:13–17

    Google Scholar 

  • Arjenaki FG, Jabbari R, Morshedi A (2012) Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. Int J Agric Crop Sci 4:726–729

    Google Scholar 

  • Athar H-R, Khan A, Ashraf M (2009) Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J Plant Nutr 32:1799–1817

    Article  CAS  Google Scholar 

  • Azooz MM, Youssef MM (2010) Evaluation of heat shock and salicylic acid treatments as inducers of drought stress tolerance in Hassawi wheat. Am J Plant Physiol 5:56–70

    Article  CAS  Google Scholar 

  • Bai C, Liang Y, Hawkesford MJ (2013) Identiication of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64:1745–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajji M, Lutts S, Kinet JM (2001) Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci 160:669–681

    Article  CAS  PubMed  Google Scholar 

  • Bandurska H, Górny AG, Zielezińska M (2008) Effects of water deficit on the relative water content, proline accumulation and injury of cell membranes in leaves of old and modern cultivars of winter wheat. Acta Physiol 524:115–125

    Google Scholar 

  • Bayoumi TY, Eid MH, Metwali EM (2008) Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. J Biotechnol 7:2341–2352

    CAS  Google Scholar 

  • Bennett E, Roberts JA, Wagstaff C (2012) Manipulating resource allocation in plants. J Exp Bot 63:3391–3400

    Article  CAS  PubMed  Google Scholar 

  • Bogale A, Tesfaye K, Geleto T (2011) Morphological and physiological attributes associated to drought tolerance of Ethiopian durum wheat genotypes under water deficit condition. J Biodivers Environ Sci. 1:22–36

    Google Scholar 

  • Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5:418–429

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Kantar M, Kurtoglu KY (2013) Drought tolerance in modern and wild wheat. Sci World J 2013:1–16

    Article  Google Scholar 

  • Chen X, Min D, Yasir TA, Hu Y-G (2012) Field crops research evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). F Crop Res 137:195–201

    Article  Google Scholar 

  • Cobb JN, Declerck G, Greenberg A, Clark R, Mccouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Czyczyło-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stojałowski S, Myśków B, Milczarski P, Quarrie S (2011) Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet Resour 9:291–295

    Article  CAS  Google Scholar 

  • Daryanto S, Wang L, Jacinthe P-A, Cordain L, Simopoulos A, Ray D, Mueller N, West P, Foley J, Kadam N et al (2016) Global synthesis of drought effects on maize and wheat production. Hui D, editor. PLoS One 11:e0156362

  • Davies WJ, Bennett MJ (2015) Achieving more crop per drop. Nat Plants 1:15118

    Article  PubMed  Google Scholar 

  • Dhanda SS, Sethi GS, Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190:6–12

    Article  Google Scholar 

  • Farooq M, Irfan M, Aziz T, Ahmad I, Cheema SA (2013) Seed priming with ascorbic acid improves drought resistance of wheat. J Agron Crop Sci 199:12–22

    Article  CAS  Google Scholar 

  • Farooq M, Hussain M, Siddique KHM (2014) Drought stress in wheat during flowering and grain-filling periods. CRC Crit Rev Plant Sci. 33:331–349

    Article  CAS  Google Scholar 

  • Farshadfar E, Ghasempour H, Vaezi H (2008) Molecular aspects of drought tolerance in bread wheat (T. aestivum). Pak J Biol Sci 11:118–122

    Article  CAS  PubMed  Google Scholar 

  • Fehér-Juhász E, Majer P, Sass L, Lantos C, Csiszár J, Turóczy Z, Mihály R, Mai A, Horváth GV, Vass I et al (2014) Phenotyping shows improved physiological traits and seed yield of transgenic wheat plants expressing the alfalfa aldose reductase under permanent drought stress. Acta Physiol Plant 36:663–673

    Article  CAS  Google Scholar 

  • Filho CMA, Colebrook EH, Lloyd DPA, Webster CP, Mooney SJ, Phillips AL, Hedden P, Whalley WR (2013) The involvement of gibberellin signalling in the effect of soil resistance to root penetration on leaf elongation and tiller number in wheat. Plant Soil 371:81–94

    Article  CAS  Google Scholar 

  • Fotovat R, Valizadeh M, Toorchi M (2007) Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J Food Agric Environ 5:225–227

    CAS  Google Scholar 

  • Geravandi M, Farshadfar E, Kahrizi D (2011) Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russ J Plant Physiol 58:69–75

    Article  CAS  Google Scholar 

  • Ghanifathi T, Valizadeh M, Shahryari R, Shahbazi H, Mollasadeghi V (2011) Effect of drought stress on germination indices and seedling growth of 12 bread wheat genotypes. Adv Environ Biol 1034–1040

  • Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Chen K (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34:1589–1594

    Article  CAS  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54

    Article  CAS  Google Scholar 

  • Gou W, Tian L, Ruan Z, Zheng P, Chen F, Zhang L, Cui Z, Zheng P, Li Z, Gao M et al (2015) Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pak J Bot. 47:581–586

    CAS  Google Scholar 

  • Hafez EM, Gharib HS (2016) Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress. GUASNR Int J Plant Prod 10:579–596

    Google Scholar 

  • Haghighattalab A, Pérez L (2016) Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12:1–15

    Article  CAS  Google Scholar 

  • Hall AJ, Richards RA (2013) Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. F Crop Res 143:18–33

    Article  Google Scholar 

  • Hameed A, Iqbal N (2014) Chemo-priming with mannose, mannitol and H2O2 mitigate drought stress in wheat. Cereal Res Commun 42:450–462

    Article  CAS  Google Scholar 

  • Hameed A, Bibi N, Akhter J, Iqbal N (2011) Plant physiology and biochemistry differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49:178–185

    Article  CAS  PubMed  Google Scholar 

  • Hendriks PW, Kirkegaard JA, Lilley JM, Gregory PJ, Rebetzke GJ (2016) A tillering inhibition gene influences root-shoot carbon partitioning and pattern of water use to improve wheat productivity in rainfed environments. J Exp Bot 67:327–340

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Cela J, Alegre L, Munné-Bosch S. 2012. Antioxidant defenses against drought stress. In: Plant responses to drought stress. Springer, Berlin, pp 231–258

  • Horn R, Wingen LU, Snape JW, Dolan L (2016) Mapping of quantitative trait loci for root hair length in wheat identifies loci that co-locate with loci for yield components. J Exp Bot 67:4535–4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant 51:480–487

    Article  Google Scholar 

  • Hossain A, Teixeira da Silva JA, Lozovskaya MV, Zvolinsky VP (2012) High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi J Biol Sci. 19:473–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Huseynova IM, Rustamova SM, Suleymanov SY, Aliyeva DR, Mammadov AC, Aliyev JA (2016) Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties. Photosynth Res 130:215–223

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Shen J, Ashton RW, White RP, Dodd IC, Parry MAJ, Whalley WR (2015) Wheat root growth responses to horizontal stratification of fertiliser in a water-limited environment. Plant Soil 386:77–88

    Article  CAS  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y, Guo T (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res 11:6066–6079

    Article  CAS  PubMed  Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, Zhu YJ, Guo TC (2013) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biol Plant 57:718–724

    Article  CAS  Google Scholar 

  • Karmollachaab A, Bakhshandeh A, Gharineh MH, Telavat MRM, Fathi G (2013) Effect of silicon application on physiological characteristics and grain yield of wheat under drought stress condition. Int J Agron Pl Prod 4:30–37

    Google Scholar 

  • Kashif M (2013) Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. Sky J Agric Res 2:116–119

    Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Keyvan S (2010) The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J Anim Plant Sci 8:1051–1060

    Google Scholar 

  • Khan MA, Iqbal M (2010) Breeding for drought tolerance in wheat (Triticum aestivum L.): constraints and future prospects. Front Agric China 5:31–34

    Article  Google Scholar 

  • Khan AJ, Hassan S, Tariq M, Khan T (2001) Haploidy breeding and mutagenesis for drought tolerance in wheat. Euphytica 120:409–414

    Article  Google Scholar 

  • Kilic H, Tacettin Y (2010) The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum). Not Bot Horti Agrobot Cluj-Napoca 38:164–170

    Google Scholar 

  • Kumar S, Sehgal SK, Kumar U, Prasad PVV, Joshi AK, Gill BS (2012) Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186:265–276

    Article  CAS  Google Scholar 

  • Liang ZS, Zhang FS, Shao MG, Zhang JH (2002) The relations of stomatal conductance, water consumption, growth rate to leaf water potential during soil drying and rewatering cycle of wheat (Triticum aestivum). Bot Bull Acad Sin 43:187–192

    Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477

    Article  Google Scholar 

  • Liu X, Li R, Chang X, Jing R (2013) Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica 189:51–66

    Article  Google Scholar 

  • Liu XE, Jiang HM, Kong HY, Sun GJ, Cheng ZG, Batool A, Xiong YC, Li X (2014) Eco-physiolgoical role of root-sourced signal in three genotypes of spring wheat cultivars: a cue of evolution. Pak J Bot 46:1217–1224

    Google Scholar 

  • Liu Y, Liang H, Lv X, Liu D, Wen X, Liao Y (2016) Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol Biochem 100:113–129

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, Rebetzke GJ, Reynolds M (2014) Integration of phenotyping and genetic platforms for a better understanding of wheat performance under drought. J Exp Bot 65:6167–6177

    Article  CAS  PubMed  Google Scholar 

  • Loutfy N, El-Tayeb MA, Hassanen AM, Moustafa MFM, Sakuma Y, Inouhe M (2012) Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). J Plant Res 125:173–184

    Article  CAS  PubMed  Google Scholar 

  • Lugojan C, Ciulca S (2011) Evaluation of relative water content in winter wheat. J Hortic For Biotechnol 15:173–177

    Google Scholar 

  • Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, Tuberosa R (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67:1161–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdid M, Kameli A, Ehlert C, Simonneau T (2011) Rapid changes in leaf elongation, ABA and water status during the recovery phase following application of water stress in two durum wheat varieties differing in drought tolerance. Plant Physiol Biochem 49:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Ashraf M, Shahbaz M (2009) Does exogenous application of glycinebetaine as a pre sowing treatment seed treatment improve growth and regulate some key physiological attributes in wheat plants grown under water deficit conditions? Pak J Bot 41:1291–1302

    CAS  Google Scholar 

  • Malik S, Ashraf M (2012) Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil Environ 31:72–77

    CAS  Google Scholar 

  • Malik S, Ashraf M, Arshad M, Malik TA (2015) Effect of ascorbic acid application on physiology of wheat under drought stress. Pak J Agric Sci 52:209–217

    Google Scholar 

  • Marcińska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K et al (2013) Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiol Plant 35:451–461

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moayedi AA, Boyce AN, Barakbah SS (2009) Study on osmotic stress tolerance in promising durum wheat genotypes using drought stress indices. Res J Agric Biol Sci 5:603–607

    Google Scholar 

  • Moayedi AA, Nasrulhaq Boyce A, Shahar Barakbah S, Author C, Akbar Moayedi A, Nasrulhaq Boyce A, Shahar Barakbah S (2010) The performance of durum and bread wheat genotypes associated with yield and yield component under different water deficit conditions. Aust J Basic Appl Sci 4:106–113

    CAS  Google Scholar 

  • Morgan J, Tan M (1996) Chromosomal location of a wheat osmoregulation gene using RFLP analysis. Aust J Plant Physiol 23:803–806

    Article  CAS  Google Scholar 

  • Moshelion M, Halperin O, Wallach R, Oren R, Way D (2015) Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant Cell Environ 38:1785–1793

    Article  CAS  PubMed  Google Scholar 

  • Nagel KA, Bonnett D, Furbank R, Walter A, Schurr U, Watt M (2015) Simultaneous effects of leaf irradiance and soil moisture on growth and root system architecture of novel wheat genotypes: implications for phenotyping. J Exp Bot 66:5441–5452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakhforoosh A, Bodewein T, Fiorani F, Bodner G (2016) Identification of water use strategies at early growth stages in durum wheat from shoot phenotyping and physiological measurements. Front Plant Sci 7:1–13

    Article  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA, Shabbir RN (2014) Selenium (Se) regulates seedling growth in wheat under drought stress. Adv Chem 2014:1–7

    Article  CAS  Google Scholar 

  • Nazarli H, Faraji F (2011) Response of proline, soluble sugars and antioxidant enzymes in wheat (Triticum aestivum L.) to different irrigation regimes in greenhouse condition. Cercet Agron în Mold 44:27–33

    Google Scholar 

  • Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J 2013:610721

    Article  CAS  Google Scholar 

  • Nikolaeva MK, Maevskaya SN, Shugaev AG, Bukhov NG (2010) Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russ J Plant Physiol 57:87–95

    Article  CAS  Google Scholar 

  • Njau P, Kimurto P, Kunyua M, Okwaro H, Ogolla J (2006) Wheat productivity improvement in the drought prone areas of Kenya. African Crop Sci J 14:49–57

    Google Scholar 

  • Nouri-Ganbalani A, Nouri-Ganbalani G, Hassanpanah D (2009) Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. J Food Agric Environ 77:228–234

    Google Scholar 

  • Parent B, Shahinnia F, Maphosa L, Berger B, Rabie H, Chalmers K, Kovalchuk A, Langridge P, Fleury D (2015) Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. J Exp Bot 66:5481–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    Article  CAS  Google Scholar 

  • Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol AB, Saranga Y (2009) Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant Cell Environ 32:758–779

    Article  CAS  PubMed  Google Scholar 

  • Pinto RS, Reynolds MP (2015) Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor Appl Genet 128:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas J-J, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad PVV, Pisipati SR, Momčilović I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197:430–441

    Article  CAS  Google Scholar 

  • Qayyum A, Razzaq A, Ahmad M, Jenks MA (2011) Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes. Afr J Biotechnol 10:14038–14045

    Article  CAS  Google Scholar 

  • Qian Quan M, Wang W, Li YH, Li DQ, Zou Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J Plant Physiol 163:165–175

    Article  CAS  Google Scholar 

  • Ratnakumar P, Deokate PP, Rane J, Jain N, Kumar V, Berghe DV, Minhas PS (2016) Effect of ortho-silicic acid exogenous application on wheat (Triticum aestivum L.) under drought. J Funct Environ Bot 6:34–42

    Article  Google Scholar 

  • Reddy SK, Liu S, Rudd JC, Xue Q, Payton P, Finlayson SA, Mahan J, Akhunova A, Holalu SV, Lu N (2014) Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. J Plant Physiol 171:1289–1298

    Article  CAS  PubMed  Google Scholar 

  • Saeedipour S, Moradi F (2011) Effect of drought at the post-anthesis stage on remobilization of carbon reserves and some physiological changes in the flag leaf of two wheat cultivars differing in drought resistance. J Agric Sci 10:3549–3557

    Google Scholar 

  • Saint Pierre C, Crossa JL, Bonnett D, Yamaguchi-Shinozaki K, Reynolds MP (2012) Phenotyping transgenic wheat for drought resistance. J Exp Bot 63:1799–1808

    Article  CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    Article  CAS  Google Scholar 

  • Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14:488–496

    Article  CAS  PubMed  Google Scholar 

  • Sankaran S, Khot LR, Carter AH (2015) Field-based crop phenotyping: multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Comput Electron Agric 118:372–379

    Article  Google Scholar 

  • Sayar R, Khemira H, Kameli A, Mosbahi M (2008) Physiological tests as predictive appreciation for drought tolerance in durum wheat (Triticum durum Desf.). Agron Res 6:79–90

    Google Scholar 

  • Schoppach R, Taylor JD, Majerus E, Claverie E, Baumann U, Suchecki R, Fleury D, Sadok W (2016) High resolution mapping of traits related to whole-plant transpiration under increasing evaporative demand in wheat. J Exp Bot 67:2847–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selote DS, Bharti S, Khanna-Chopra R (2004) Drought acclimation reduces O2-accumulation and lipid peroxidation in wheat seedlings. Biochem Biophys Res Commun 314:724–729

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Liang ZS, Shao MA, Sun Q (2005) Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits. Colloids Surf B Biointerfaces 42:187–195

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhang Y, Scanlon RB, Lei H, Yang D, Yang F (2013) Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain. Agric For Meteorol 181:133–142

    Article  Google Scholar 

  • Shewry PR (2007) Improving the protein content and composition of cereal grain. J Cereal Sci 46:239–250

    Article  CAS  Google Scholar 

  • Shi J, Yasuor H, Yermiyahu U, Zuo Q, Ben-Gal A (2014) Dynamic responses of wheat to drought and nitrogen stresses during re-watering cycles. Agric Water Manag 146:163–172

    Article  Google Scholar 

  • Siahpoosh MR, Dehghanian E, Kamgar A (2011) Drought tolerance evaluation of bread wheat genotypes using water use efficiency, evapotranspiration efficiency, and drought susceptibility index. Crop Sci 51:1198–1204

    Article  Google Scholar 

  • Siddique MRB, Hamid A, Islam MS (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sin 41:35–39

    Google Scholar 

  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2009) Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regul 58:107–117

    Article  CAS  Google Scholar 

  • Simova-Stoilova L, Vaseva I, Grigorova B, Demirevska K, Feller U (2010) Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem 48:200–206

    Article  CAS  PubMed  Google Scholar 

  • Tatar O, Gevrek I (2008) Lipid peroxidation and water content of wheat. Asian J Plant Sci 7:409–412

    Article  CAS  Google Scholar 

  • Tian F, Gong J, Zhang J, Zhang M, Wang G, Li A, Wang W (2013) Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. J Exp Bot 64:1509–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varga B, Vida G, Varga-László E, Bencze S, Veisz O (2015) Effect of simulating drought in various phenophases on the water use efficiency of winter wheat. J Agron Crop Sci 201:1–9

    Article  Google Scholar 

  • Wang X, Vignjevic M, Jiang D, Jacobsen S, Wollenweber B (2014) Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var, Vinjett. J Exp Bot 65:6441–6456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Huang J, Li Y, Li C, Hou J, Liang W (2016) Involvement of nitric oxide-mediated alternative pathway in tolerance of wheat to drought stress by optimizing photosynthesis. Plant Cell Rep 35:2033–2044

    Article  CAS  PubMed  Google Scholar 

  • Waraich EA, Ahmad R, Saifullah Ahmad S, Ahmad A (2010) Impact of water and nutrient management on the nutritional quality of wheat. J Plant Nutr 33:640–653

    Article  CAS  Google Scholar 

  • Waraich EA, Ahmad R, Ashraf MY (2011) Role of mineral nutrition in alleviation of drought stress in plants. Aust J Crop Sci 5:764–777

    CAS  Google Scholar 

  • Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SVS, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Xu Q, Huang B (2015) Ascorbic acid mitigation of water stress-inhibition of root growth in association with oxidative defense in tall fescue (Festuca arundinacea Schreb.). Front. Plant Sci 6:807

    Google Scholar 

  • Xue Q, Rudd JC, Liu S, Jessup KE, Devkota RN, Mahano JR (2014) Yield Determination and water-use efficiency of wheat under water-limited conditions in the U.S. Southern High Plains. Crop Sci 54:34–47

    Article  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Yang D-L, Jing R-L, Chang X-P, Li W (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasmeen A, Basra S, Ahmad R, Wahid A (2012) Performance of late sown wheat in response to foliar application of Moringa oleifera Lam. leaf extract. Chil J Agric Res 72:92–97

    Article  Google Scholar 

  • Yasmeen A, Basra SMA, Wahid A, Nouman W, Rehman Hafeez-ur (2013) Exploring the potential of Moringa oleifera leaf extract (MLE) as a seed priming agent in improving wheat performance. Turk J Botany. 37:512–520

    CAS  Google Scholar 

  • Zhang X, Chen X, Wu Z, Zhang X, Huang C, Cao M (2005) A dwarf wheat mutant is associated with increased drought resistance and altered responses to gravity. Afr J Biotechnol 4:1054–1057

    Google Scholar 

  • Zhang J, Dell B, Conocono E, Waters I, Setter T, Appels R (2009) Water deficits in wheat: fructan exohydrolase (1-FEH) mRNA expression and relationship to soluble carbohydrate concentrations in two varieties. New Phytol 81:843–850

    Article  CAS  Google Scholar 

  • Zhao CX, Guo LY, Jameel CA, Shao HB, Yang HB (2008) Prospects for dissecting plant-adaptive molecular mechanisms to improve wheat cultivars in drought environments. C R Biol 331:579–586

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Ravnskov S, Jiang D, Wollenweber B (2015) Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit. Plant Growth Regul 75:751–760

    Article  CAS  Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rizwan.

Additional information

Communicated by U. Feller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, Z., Waraich, E.A., Akhtar, S. et al. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol Plant 40, 80 (2018). https://doi.org/10.1007/s11738-018-2651-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2651-6

Keywords

Navigation