Skip to main content
Log in

Nitrogen-deficiency-induced loss in photosynthesis and modulation of β-galactosidase activity during senescence of Arabidopsis leaves

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Senescence-induced loss in the content of chlorophyll and the rate of oxygen evolution is remarkably enhanced when the leaves of Arabidopsis thaliana experience nitrogen-deficiency stress. On the other hand, the decline in the level of total soluble sugar during senescence is very slow and nitrogen deficiency does not exhibit any further change. The relative stability in the level of the sugar in the background of severe decline of photosynthesis may suggest the contribution of sugars from other sources to sustain its homeostasis to execute and complete energy-dependent senescence process and stress response. The possible participation of cell wall polysaccharides contributing to sugar homeostasis is predicted. Senescence-induced increase in the activity of β-galactosidase (EC 3.2.1.23) and its further enhancement in senescing leaves experiencing nitrogen stress support the proposition of participation of the enzyme for breakdown of the wall polysaccharides to sugars. The loss of photosynthesis as a possible signal for enhancement in the activity of β-galactosidase has been further examined in the excised leaves incubated in Okada and Shimura (OS) nutrient medium with and without nitrogen. Nitrogen limitation experienced by excised leaves causes rapid loss in photosynthesis with concomitant increase in the activity of the enzyme extracted both from soluble and cell wall fractions. The differential activity of the enzyme from soluble and cell wall fractions during development-dependent leaf senescence and premature senescence in excised leaves induced by nitrogen deficiency appears to be complex and needs to be resolved in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn YO, Zheng M, Bevan DR, Esen A, Shiu S-H, Benson J, Peng H-P, Miller JT, Cheng C-L, Poulton JE, Shih M-C (2007) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35. Phytochemistry 68:1510–1520

    Article  CAS  PubMed  Google Scholar 

  • Ali ZM, Armugam S, Lazan H (1995) β-Galactosidase and its significance in ripening mango fruit. Phytochemistry 38:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Aoyama S, Reyes TH, Guglielminetti L, Lu Y, Morita Y, Sato T, Yamaguchi J (2014) Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. Plant Cell Physiol 55:293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65:3799–3811

    Article  PubMed  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–943

    Article  PubMed  Google Scholar 

  • Balasubramaniam S, Lee HC, Lazan H, Othman R, Ali ZM (2005) Purification and properties of a β-galactosidase from carambola fruit with significant activity towards cell wall polysaccharides. Phytochemistry 66:153–163

    Article  CAS  PubMed  Google Scholar 

  • Balazadeh S, Schildhauer J, Araújo WL, Munné-Bosch S, Fernie AR, Proost S, Humbeck K, Mueller-Roeber B (2014) Reversal of senescence by N resupply to N-starved Arabidopsis thaliana: transcriptomic and metabolomic consequences. J Exp Bot 65:3975–3992

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswal B, Pandey JK (2016) Development of chloroplast: biogenesis, senescence, and regulations. In: Pessarakli M (ed) Handbook of photosynthesis, 3rd edn. CRC Press, Florida, pp 77–93

    Google Scholar 

  • Biswal UC, Biswal B, Raval MK (2003) Chloroplast biogenesis: from proplastid to gerontoplast. Kluwer Academic Publishers/Springer, Dordrecht

    Book  Google Scholar 

  • Biswal B, Mohapatra PK, Raval MK, Biswal UC (2012) Photosynthetic regulation of senescence in green leaves: involvement of sugar signalling. In: Itoh S, Mohanty P, Guruprasad KN (eds) Photosynthesis: overviews on recent progress and future perspectives. IK International Publishing House Pvt Ltd, New Delhi, pp 245–260

    Google Scholar 

  • Biswal B, Krupinska K, Biswal UC (eds) (2013) Plastid development in leaves during growth and senescence, vol 36. Springer, Dordrecht

    Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S,  Kim Y-s, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin J-F, Wu S-H, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Buysse J, Merckx R (1993) An improved colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44:1627–1629

    Article  CAS  Google Scholar 

  • Carp M-J, Gepstein S (2007) Genomics and proteomics of leaf senescence. In: Gan S (ed) Senescence processes in plants. Blackwell, New York, pp 202–230

  • Chandrasekar B, van der Hoorn RAL (2016) Beta galactosidases in Arabidopsis and tomato—a mini review. Biochem Soc Trans 44:150–158

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Wang S, Xiong B, Cao B, Deng X (2015) Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. PLoS One 10:e0137026

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrost B, Daniel A, Krupinska K (2004) Regulation of α-galactosidase gene expression in primary foliage leaves of barley (Hordeum vulgare L.) during dark-induced senescence. Planta 218:886–889

    Article  CAS  PubMed  Google Scholar 

  • Chrost B, Kolukisaoglu U, Schulz B, Krupinska K (2007) An α-galactosidase with an essential function during leaf development. Planta 225:311–320

    Article  CAS  PubMed  Google Scholar 

  • Contento AL, Kim S-J, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol 135:2330–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards M, Bowman YJL, Dea ICM, Reid JSG (1988) A β-D-galactosidase from nasturtium (Tropaeolum majus L.) cotyledons: purification, properties, and demonstration that xyloglucan is the natural substrate. J Biol Chem 263:4333–4337

    CAS  PubMed  Google Scholar 

  • Fischer AM (2012) The complex regulation of senescence. Crit Rev Plant Sci 31:124–147

    Article  CAS  Google Scholar 

  • Fujiki Y, Yoshikawa Y, Sato T, Inada N, Ito M, Nishida I, Watanabe A (2001) Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol Plant 111:345–352

    Article  CAS  PubMed  Google Scholar 

  • Fujiki Y, Nakagawa Y, Furumoto T, Yoshida S, Biswal B, Ito M, Watanabe A, Nishida I (2005) Response to darkness of late-responsive dark-inducible genes is positively regulated by leaf age and negatively regulated by calmodulin-antagonist-sensitive signalling in Arabidopsis thaliana. Plant Cell Physiol 46:1741–1746

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp M-J, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642

    Article  CAS  PubMed  Google Scholar 

  • Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102

    Article  CAS  PubMed  Google Scholar 

  • Grover A (1993) How do senescing leaves lose photosynthetic activity. Curr Sci 64:226–234

    Google Scholar 

  • Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. CR Biol 333:382–391

    Article  CAS  Google Scholar 

  • Guo Y, Gan S (2005) Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol 71:83–112

    Article  CAS  PubMed  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Iglesias N, Abelenda JA, Rodiño M, Sampedro J, Revilla G, Zarra I (2006) Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana. Plant Cell Physiol 47:55–63

    Article  CAS  PubMed  Google Scholar 

  • Keskitalo J, Bergquist G, Gardeström P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa Y, Kanayama Y, Yamaki S (1995) Isolation of β-galactosidase fractions from Japanese pear: activity against native cell wall polysaccharides. Physiol Plant 93:545–550

    Article  CAS  Google Scholar 

  • Lee E-J, Koizumi N, Sano H (2004) Identification of genes that are up-regulated in concert during sugar depletion in Arabidopsis. Plant Cell Environ 27:337–345

    Article  CAS  Google Scholar 

  • Lee E-J, Matsumura Y, Soga K, Hoson T, Koizumi N (2007) Glycosyl hydrolases of cell wall are induced by sugar starvation in Arabidopsis. Plant Cell Physiol 48:405–413

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Douce R, Packer L (eds) Methods in enzymology, vol 148. Academic Press, New York, pp 350–382

    Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lin J-F, Wu S-H (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol 128:472–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10:23–36

    Article  CAS  PubMed  Google Scholar 

  • Minic Z, Jouanin L (2006) Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Biochem 44:435–449

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra PK, Patro L, Raval MK, Ramaswamy NK, Biswal UC, Biswal B (2010) Senescence-induced loss in photosynthesis enhances cell wall β-glucosidase activity. Physiol Plant 138:346–355

    Article  CAS  PubMed  Google Scholar 

  • Noodén LD, Guiamét JJ, John I (1997) Senescence mechanisms. Physiol Plant 101:746–753

    Article  Google Scholar 

  • Okada K, Shimura Y (1990) Reversible root tip rotation in Arabidopsis seedlings induced by obstacle-touching stimulus. Science 250:274–276

    Article  CAS  PubMed  Google Scholar 

  • Patro L, Mohapatra PK, Biswal UC, Biswal B (2014) Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase. J Photochem Photobiol B 137:49–54

    Article  CAS  PubMed  Google Scholar 

  • Perez Almeida IB (2004) Arabidopsis cell wall β-galactosidase gene family: expression, catalytic activities, biological function in galactose dynamics. Dissertation, Purdue University

  • Ranwala AP, Suematsu C, Masuda H (1992) The role of β-galactosidases in the modification of cell wall components during muskmelon fruit ripening. Plant Physiol 100:1318–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schildhauer J, Wiedemuth K, Humbeck K (2008) Supply of nitrogen can reverse senescence processes and affect expression of genes coding for plastidic glutamine synthetase and lysine-ketoglutarate reductase/saccharopine dehydrogenase. Plant Biol 10:76–84

    Article  CAS  PubMed  Google Scholar 

  • Schulte auf’m Erley G, Begum N, Worku M, Bänziger M, Horst WJ (2007) Leaf senescence induced by nitrogen deficiency as indicator of genotypic differences in nitrogen efficiency in tropical maize. J Plant Nutr Soil Sci 170:106–114

  • Sedigheh HG, Mortazavian M, Norouzian D, Atyabi M, Akbarzadeh A, Hasanpoor K, Ghorbani M (2011) Oxidative stress and leaf senescence. BMC Res Notes 4:477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas H (2013) Senescence, ageing and death of the whole plant. New Phytol 197:696–711

    Article  PubMed  Google Scholar 

  • Troncoso-Ponce MA, Cao X, Yang Z, Ohlrogge JB (2013) Lipid turnover during senescence. Plant Sci 205–206:13–19

    Article  PubMed  Google Scholar 

  • van Doorn WG (2008) Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels? J Exp Bot 59:1963–1972

    Article  PubMed  Google Scholar 

  • Wingler A, Roitsch T (2008) Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol 10:50–62

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:79–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India by a grant to BB under CSIR Emeritus Scientist Project (No. 21 (0886)/12-EMR II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basanti Biswal.

Additional information

Communicated by L. A. Kleczkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, J.K., Dash, S.K. & Biswal, B. Nitrogen-deficiency-induced loss in photosynthesis and modulation of β-galactosidase activity during senescence of Arabidopsis leaves. Acta Physiol Plant 39, 75 (2017). https://doi.org/10.1007/s11738-017-2371-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2371-3

Keywords

Navigation