Skip to main content
Log in

Surface tension of liquid metal: role, mechanism and application

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Surface tension plays a core role in dominating various surface and interface phenomena. For liquid metals with high melting temperature, a profound understanding of the behaviors of surface tension is crucial in industrial processes such as casting, welding, and solidification, etc. Recently, the room temperature liquid metal (RTLM) mainly composed of gallium-based alloys has caused widespread concerns due to its increasingly realized unique virtues. The surface properties of such materials are rather vital in nearly all applications involved from chip cooling, thermal energy harvesting, hydrogen generation, shape changeable soft machines, printed electronics to 3D fabrication, etc. owing to its pretty large surface tension of approximately 700 mN/m. In order to promote the research of surface tension of RTLM, this paper is dedicated to present an overview on the roles and mechanisms of surface tension of liquid metal and summarize the latest progresses on the understanding of the basic knowledge, theories, influencing factors and experimental measurement methods clarified so far. As a practical technique to regulate the surface tension of RTLM, the fundamental principles and applications of electrowetting are also interpreted. Moreover, the unique phenomena of RTLM surface tension issues such as surface tension driven selfactuation, modified wettability on various substrates and the functions of oxides are discussed to give an insight into the acting mechanism of surface tension. Furthermore, future directions worthy of pursuing are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335–354

    Article  MathSciNet  MATH  Google Scholar 

  2. Ko E Y, Choi J, Park J Y, Sohn I. Simulation of low carbon steel solidification and mold flux crystallization in continuous casting using a multi-mold simulator. Metals and Materials International, 2014, 20(1): 141–151

    Article  Google Scholar 

  3. Shin M, Oh J S, Lee J, Jung S, Lee J. Dissolution rate of solid iron into liquid Fe-C alloy. Metals and Materials International, 2014, 20 (6): 1139–1143

    Article  Google Scholar 

  4. Aqra F, Ayyad A. Surface tension of liquid alkali, alkaline, and main group metals: theoretical treatment and relationship investigations. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 2011, 42(9): 2680–2684

    Article  Google Scholar 

  5. Amin M R, Gosh R C, Bhuiyan G M. Surface tension of liquid transition and noble metals. Journal of Non-Crystalline Solids, 2013, 380: 42–47

    Article  Google Scholar 

  6. Zhao J, Li J R, Liu S, Han M. A method to measure surface tension of liquid superalloy at room temperature. Hot Working Technology, 2009, 38(23): 57–60

    Google Scholar 

  7. Seo S M, Paik Y H, Kim D S, Lee W P. Interfacial tension and contact angle variations of SUS304 melt in contact with solid oxides and CaO-SiO2-Al2O3 (CaF2) slags at 1470°C. Metals and Materials International, 1996, 2(2): 65–69

    Article  Google Scholar 

  8. Vitos L, Ruban A V, Skriver H L, Kollár J. The surface energy of metals. Surface Science, 1998, 411(1-2): 186–202

    Article  Google Scholar 

  9. Kim S K, Wang W, Kang Y B. Modeling surface tension of multicomponent liquid steel using modified quasichemical model and constrained Gibbs energy minimization. Metals and Materials International, 2015, 21(4): 765–774

    Article  Google Scholar 

  10. Gough R C, Morishita A M, Dang J H, Moorefield M R, Shiroma W A, Ohta A T. Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro & Nano Systems Letters, 2015, 3(1): 1–9

    Article  Google Scholar 

  11. Yaws C L. Handbook of Vapor Pressure: Volume 4: Inorganic Componds and Elements. Huston: Gulf Professional Publishing, 1995

    Google Scholar 

  12. Blair F M, Whitworth J M, Mccabe J F. The physical properties of a gallium alloy restorative material. Dental Materials Official Publication of the Academy of Dental Materials, 1995, 11(4): 277–280

    Article  Google Scholar 

  13. Zhang Q, Zheng Y, Liu J. Direct writing of electronics based on alloy and metal (DREAM) ink: a newly emerging area and its impact on energy, environment and health sciences. Frontiers in Energy, 2012, 6(4): 311–340

    Article  Google Scholar 

  14. Yang X H, Tan S C, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Conversion and Management, 2016, 117: 577–585

    Article  Google Scholar 

  15. Ge H S, Liu J. Keeping smartphones cool with gallium phase change material. Journal of Heat Transfer, 2013, 135(5): 054503

    Article  Google Scholar 

  16. Ge H S, Li H Y, Mei S F, Liu J. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renewable & Sustainable Energy Reviews, 2013, 21: 331–346

    Article  Google Scholar 

  17. Deng Y G, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. Journal of Electronic Packaging, 2010, 132(3): 031009

    Article  Google Scholar 

  18. Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant. Physics Letters A, 2007, 361(3): 252–256

    Article  Google Scholar 

  19. Vetrovec J, Litt A S, Copeland D A, Junghans J, Durkee R. Liquid metal heat sink for high-power laser diodes. In: International Society for Optics and Photonics, California, USA: SPIE LASE, 2013: 86050

    Google Scholar 

  20. Jackel J L, Hackwood S, Veselka J J, Beni G. Electrowetting switch for multimode optical fibers. Applied Optics, 1983, 22(11): 1765–1770

    Article  Google Scholar 

  21. Sen P, Kim C J. Microscale liquid-metal switches—a review. IEEE Transactions on Industrial Electronics, 2009, 56(4): 1314–1330

    Article  Google Scholar 

  22. Tsai J T H, Ho C M,Wang F C, Liang C T. Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium. Applied Physics Letters, 2009, 95(25): 251110

    Article  Google Scholar 

  23. Ponce Wong R D, Posner J D, Santos V J. Flexible microfluidic normal force sensor skin for tactile feedback. Sensors and Actuators A, Physical, 2012, 179: 62–69

    Article  Google Scholar 

  24. Majidi C, Kramer R, Wood R J. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Materials and Structures, 2011, 20(10): 105017

    Article  Google Scholar 

  25. Park Y L, Majidi C, Kramer R, Bérard P, Wood R J. Hyperelastic pressure sensing with a liquid-embedded elastomer. Journal of Micromechanics and Microengineering, 2010, 20(12): 125029

    Article  Google Scholar 

  26. Fassler A, Majidi C. Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics. Smart Materials and Structures, 2013, 22(5): 055023

    Article  Google Scholar 

  27. Cheng S, Wu Z. A microfluidic, reversibly stretchable, large-area wireless strain sensor. Advanced Functional Materials, 2011, 21 (12): 2282–2290

    Article  Google Scholar 

  28. So J H, Thelen J, Qusba A, Hayes G J, Lazzi J, Dickey M D. Reversibly deformable and mechanically tunable fluidic antennas. Advanced Functional Materials, 2009, 19(22): 3632–3637

    Article  Google Scholar 

  29. Cheng S, Rydberg A, Hjort K, Wu Z. Liquid metal stretchable unbalanced loop antenna. Applied Physics Letters, 2009, 94(14): 144103

    Article  Google Scholar 

  30. Kubo M, Li X, Kim C, Hashimoto M, Wiley B J, Ham D, Whitesides G M. Stretchable microfluidic radiofrequency antennas. Advanced Materials, 2010, 22(25): 2749–2752

    Article  Google Scholar 

  31. Hayes G J, So J H, Qusba A, Dickey M D, Lazzi G. Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2151–2156

    Article  Google Scholar 

  32. Tang S Y, Khoshmanesh K, Sivan V, Petersen P, O’mullane A P, Abbott D, Mitchell A, Kalantarzadeh K. Liquid metal enabled pump. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3304–3309

    Article  Google Scholar 

  33. Tang S Y, Sivan V, Petersen P, Zhang W, Morrison P D, Kalantar-Zadeh K, Mitchell A, Khoshmanesh K. Liquid metal actuator for inducing chaotic advection. Advanced Functional Materials, 2014, 24(37): 5851–5858

    Article  Google Scholar 

  34. Zhang J, Sheng L, Jin C, Liu J. Liquid metal as connecting or functional recovery channel for the transected sciatic Nerve. Eprint arXiv:1404.5931, 2014

    Google Scholar 

  35. Jin C, Zhang J, Li X, Yang X K, Yang X Y, Li J J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3: 3442

    Article  Google Scholar 

  36. Wang Q, Yu Y, Pan K Q, Liu J. Liquid metal angiography for mega contrast X-ray visualization of vascular network in reconstructing in-vitro organ anatomy. IEEE Transactions on Biomedical Engineering, 2014, 61(7): 2161–2166

    Article  Google Scholar 

  37. Lu Y, Hu Q Y, Lin Y L, Pacardo D, Wang C, Sun W J, Ligler F S, Dickey M D, Gu Z. Transformable liquid-metal nanomedicine. Nature Communications, 2015, 6: 10066

    Article  Google Scholar 

  38. Zhang J, Guo R, Liu J. Self-propelled liquid metal motors steered by a magnetic or electrical field for drug delivery. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2016, 4(32): 5349–5357

    Article  Google Scholar 

  39. Jeong S H, Hagman A, Hjort K, Jobs M, Sundqvist J,Wu Z. Liquid alloy printing of microfluidic stretchable electronics. Lab on a Chip, 2012, 12(22): 4657–4664

    Article  Google Scholar 

  40. Tabatabai A, Fassler A, Usiak C, Majidi C. Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir, 2013, 29(20): 6194–6200

    Article  Google Scholar 

  41. Gozen B A, Tabatabai A, Ozdoganlar O B, Majidi C. High-density soft-matter electronics with micron-scale line width. Advanced Materials, 2014, 26(30): 5211–5216

    Article  Google Scholar 

  42. Wang L, Liu J. Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink. Science China. Technological Sciences, 2014, 57(9): 1721–1728

    Article  Google Scholar 

  43. Wang L, Liu J. Compatible hybrid 3D printing of metal and nonmetal inks for direct manufacture of end functional devices. Science China, Technological Sciences, 2014, 57(11): 2089–2095

    Article  Google Scholar 

  44. Zhang J, Yao Y Y, Sheng L, Liu J. Self-fueled biomimetic liquid metal mollusk. Advanced Materials, 2015, 27(16): 2648–2655

    Article  Google Scholar 

  45. Tan S C, Yuan B, Liu J. Electrical method to control the running direction and speed of self-powered tiny liquid metal motors. Proceedings–Royal Society. Mathematical, Physical and Engineering Sciences, 2015, 471(2183): 20150297

    Article  Google Scholar 

  46. Tan S C, Gui H, Yuan B, Liu J. Magnetic trap effect to restrict motion of self-powered tiny liquid metal motors. Applied Physics Letters, 2015, 107(7): 071904

    Article  Google Scholar 

  47. Tang X, Tang S Y, Sivan V, Zhang W, Mitchell A, Kalantarzadeh K, Khoshmanesh K. Photochemically induced motion of liquid metal marbles. Applied Physics Letters, 2013, 103(17): 174104

    Article  Google Scholar 

  48. Zavabeti A, Daeneke T, Chrimes A F, O’Mullane A P, Ou J Z, Mitchell A, Khoshmanesh K, Kalantar-zadeh K. Ionic imbalance induced self-propulsion of liquid metals. Nature Communications, 2016, 7: 12402

    Article  Google Scholar 

  49. Mei S F, Gao Y X, Li H Y, Deng Z S, Liu J. Thermally induced porous structures in printed gallium coating to make transparent conductive film. Applied Physics Letters, 2013, 102(4): 041905

    Article  Google Scholar 

  50. Doudrick K, Liu S, Mutunga EM, Klein K L, Damle V, Varanasi K K, Rykaczewski K. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir, 2014, 30(23): 6867–6877

    Article  Google Scholar 

  51. Regan M J, Tostmann H, Pershan P S, Magnussen O M, Dimasi E, Ocko B M, Deutsch M. X-ray study of the oxidation of liquidgallium surfaces. Physical Review B: Condensed Matter and Materials Physics, 1997, 55(16): 10786–10790

    Article  Google Scholar 

  52. Regan M J, Pershan P S, Magnussen O M, Ocko B M, Deutsch M, Berman L E. X-ray reflectivity studies of liquid metal and alloy surfaces. Physical Review B: Condensed Matter, 1997, 55(23): 15874–15884

    Article  Google Scholar 

  53. Cademartiri L, Thuo M M, Nijhuis C A, Reus W F, Tricard S, Barber J R, Sodhi R N S, Brodersen P, Kim C, Chiechi R C, Whitesides G M. Electrical resistance of AgTS–S(CH2)n–1CH3//Ga2O3/EGaIn tunneling junctions. Journal of Physical Chemistry C, 2012, 116(20): 10848–10860

    Article  Google Scholar 

  54. Ilyas N, Butcher D P, Durstock M F, Tabor C E. Ion exchange membranes as an interfacial medium to facilitate gallium liquid metal alloy mobility. Advanced Materials Interfaces, 2016, 3(9): 1500665

    Article  Google Scholar 

  55. Tang J, Zhou Y, Liu J, Wang J, Zhu W. Liquid metal actuated ejector vacuum system. Applied Physics Letters, 2015, 106(3): 031901

    Article  Google Scholar 

  56. Baldwin M J, Lynch T, Chousal L, Seraydarian R P, Doerner R P, Luckhardt S C. An injector device for producing clean-surface liquid metal samples of Li, Ga and Sn–Li in vacuum. Fusion Engineering and Design, 2004, 70(2): 107–113

    Article  Google Scholar 

  57. Liu T, Sen P, Kim C J. Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. Journal of Microelectromechanical Systems, 2012, 21(2): 443–450

    Article  Google Scholar 

  58. Zhang Q, Gao Y X, Liu J. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Applied Physics A, 2014, 116: 1091–1097

    Article  Google Scholar 

  59. Gao Y X, Liu J. Gallium-based thermal interface material with high complianceand wettability. Applied Physics A, Materials Science & Processing, 2012, 107(3): 701–708

    Article  Google Scholar 

  60. Esinenco D, Codreanu I, Rebigan R. Design of inkjet printing head, based on electrowetting effect, for printable electronics applications. In: International Semiconductor Conference, Sinaia, Romania: IEEE, 2006, 2: 443–446

    Google Scholar 

  61. Semenchenko V K. Surface Phenomena in Metals and Alloys. Oxford: Pergamon Press, 1962

    Google Scholar 

  62. Chacon E, Flores F, Navascues G. A theory for liquid metal surface tension. Journal of Physics F: Metal Physics, 1984, 14(7): 1587–1601

    Article  Google Scholar 

  63. Safran S A. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Vol. 90. New York: Perseus Books, 1994

  64. Mersmann A. Calculation of interfacial tensions. Journal of Crystal Growth, 1990, 102(4): 841–847

    Article  Google Scholar 

  65. Jain T S, De Pablo J J. Calculation of interfacial tension from density of states. Journal of Chemical Physics, 2003, 118(9): 4226–4229

    Article  Google Scholar 

  66. Digilov R M. Semi-empirical model for prediction of crystal–melt interfacial tension. Surface Science, 2004, 555(1–3): 68–74

    Article  Google Scholar 

  67. Nino-Amezquita O G, Enders S, Jaeger P T, Eggers R. Measurement and prediction of interfacial tension of binary mixtures. Industrial & Engineering Chemistry Research, 2010, 49(2): 592–601

    Article  Google Scholar 

  68. Gloor G J, Jackson G, Blas F, Del Rio E M, De Miguel E. Prediction of the vapor-liquid interfacial tension of nonassociating and associating fluids with the SAFT-VR density functional theory. Journal of Physical Chemistry C, 2007, 111(43): 15513–15522

    Article  Google Scholar 

  69. Barrett J C. Some estimates of the surface tension of curved surfaces using density functional theory. Journal of Chemical Physics, 2006, 124(14): 144705

    Article  Google Scholar 

  70. Fu D, Lu J F, Liu J C, Li Y G. Prediction of interfacial tension for binary liquid-liquid systems based on density functional theory. Journal of Chemical Industry and Engineering, 2002, 53(9): 892–898

    Google Scholar 

  71. Telo Da Gama M, Evans R, Sluckin T. The structure and surface tension of the liquid-vapour interface of a model of a molten salt. Molecular Physics, 1980, 41(6): 1355–1372

    Article  Google Scholar 

  72. Weeks J D. Structure and thermodynamics of the liquid–vapor interface. Journal of Chemical Physics, 1977, 67(7): 3106–3121

    Article  Google Scholar 

  73. Johnson M, Nordholm S. Generalized van der Waals theory. VI. Application to adsorption. Journal of Chemical Physics, 1981, 75 (4): 1953–1957

    Google Scholar 

  74. Ho P S, Kwok T. Electromigration in metals. Reports on Progress in Physics, 1989, 52(3): 301–348

    Article  Google Scholar 

  75. Pai S T, Marton J P. Electromigration in metals. Canadian Journal of Physics, 1977, 55(2): 103–115

    Article  Google Scholar 

  76. Beni G, Hackwood S, Jackel J L. Continuous electrowetting effect. Applied Physics Letters, 1982, 40(10): 912–914

    Article  Google Scholar 

  77. Gongadze E, Van R U, Iglic A. Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime. Cellular & Molecular Biology Letters, 2011, 16(4): 576–594

    Article  Google Scholar 

  78. Grahame D C. Electrode processes and the electrical double layer. Annual Review of Physical Chemistry, 1955, 6(1): 337–358

    Article  Google Scholar 

  79. Daywitt W C. The electron-vacuum coupling force in the Dirac electron theory and its relation to the zitterbewegung. Progress in Physics, 2013, 3: 25–28

    MathSciNet  Google Scholar 

  80. Enderby J, March N. Electron theory of metals and liquid state theory. Advances in Physics, 1967, 16(64): 691–702

    Article  Google Scholar 

  81. Scatchard G. The Gibbs adsorption isotherm 1. Journal of physical chemistry, 1962, 66(4): 618–620

    Article  Google Scholar 

  82. Lippmann G. Relationship between the electric and capillary phenomena. Gauthier-Villars, 1875 (in French)

    Google Scholar 

  83. Quinn A, Sedev R, Ralston J. Contact angle saturation in electrowetting. Journal of Physical Chemistry B, 2005, 109(13): 6268–6275

    Article  Google Scholar 

  84. Nogi K, Ogino K, McLean A, Miller W A. The temperature coefficient of the surface tension of pure liquid metals. Metallurgical Transactions B, Process Metallurgy, 1986, 17(1): 163–170

    Article  Google Scholar 

  85. Keene B J. Review of data for the surface tension of pure metals. International Materials Reviews, 1993, 38(4): 157–192

    Article  Google Scholar 

  86. Wikipedia. Surface tension. https://en.wikipedia.org/wiki/Surface_tension. 2016-11-13

  87. Lu H M, Jiang Q. Surface tension and its temperature coefficient for liquid metals. Journal of Physical Chemistry B, 2005, 109(32): 15463–15468

    Article  Google Scholar 

  88. Dayal B. Surface tension and melting point. Nature, 1952, 169 (4311): 1010

    Article  Google Scholar 

  89. Xiao G. An empirical formula between the surface tensions and the melting points for metals. Jiangxi Science, 1987, 5(4): 31–35 (in Chinese)

    MathSciNet  Google Scholar 

  90. Ceotto D. Empirical equation for predicting the surface tension of some liquid metals at their melting point. Russian Journal of Physical Chemistry, 2014, 88(7): 1269–1272

    Article  Google Scholar 

  91. Aqra F, Ayyad A. Surface energies of metals in both liquid and solid states. Applied Surface Science, 2011, 257(15): 6372–6379

    Article  Google Scholar 

  92. Arafune K, Sugiura M, Hirata A. Investigation of thermal Marangoni convection in low-and high-Prandtl-number fluids. Journal of Chemical Engineering of Japan, 1999, 32(1): 104–109

    Article  Google Scholar 

  93. Eustathopoulos N, Drevet B, Ricci E. Temperature coefficient of surface tension for pure liquid metals. Journal of Crystal Growth, 1998, 191(1–2): 268–274

    Article  Google Scholar 

  94. Kobatake H, Brillo J, Schmitz J, Pichon P Y. Surface tension of binary Al–Si liquid alloys. Journal of Materials Science, 2015, 50 (9): 3351–3360

    Article  Google Scholar 

  95. Scheller P R. Surface effects and flow conditions in small volume melts with varying sulphur content. Steel Research, 2001, 72(3): 76–80

    Article  Google Scholar 

  96. Yu J J, Ruan D F, Li Y R, Chen J C. Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient. Experimental Thermal and Fluid Science, 2015, 61: 79–86

    Article  Google Scholar 

  97. Zhang Q Z, Peng L, Wang F, Liu J. Thermocapillary convection with bidirectional temperature gradients in a shallow annular pool of silicon melt: effects of ambient temperature and pool rotation. International Journal of Heat and Mass Transfer, 2016, 101: 354–364

    Article  Google Scholar 

  98. Wikipedia. Marangoni effect. https://en.wikipedia.org/wiki/Marangoni_effect. 2016-10-16

  99. Alchagirov B B, Mozgovoi A G. The surface tension of molten gallium at high temperatures. High Temperature, 2005, 43(5): 791–792

    Article  Google Scholar 

  100. Alchagirov B B, Dadashev R K, Dyshekova F F, Elimkhanov D Z. Temperature dependence of the surface tension of indium. Russian Journal of Physical Chemistry A, 2013, 87(6): 890–894

    Article  Google Scholar 

  101. Alchagirov A B, Alchagirov B B, Khokonov K B. A device for the study of the surface tension of liquid metal solutions with an increased elasticity of intrinsic vapors. Instruments and Experimental Techniques, 2003, 46(3): 413–415

    Article  Google Scholar 

  102. Ozawa S, Takahashi S, Suzuki S, Sugawara H, Fukuyama H. Relationship of surface tension, oxygen partial pressure, and temperature for molten iron. Japanese Journal of Applied Physics, 2011, 50(11S): 11R05

    Article  Google Scholar 

  103. Ozawa S, Takahashi S, Watanabe N, Fukuyama H. Influence of oxygen adsorption on surface tension of molten nickel measured under reducing gas atmosphere. International Journal of Thermophysics, 2014, 35(9–10): 1705–1711

    Article  Google Scholar 

  104. Aqra F, Ayyad A. Surface tension of pure liquid bismuth and its temperature dependence: theoretical calculations. Materials Letters, 2011, 65(4): 760–762

    Article  Google Scholar 

  105. Aqra F, Ayyad A. Theoretical temperature-dependence surface tension of pure liquid gold. Materials Letters, 2011, 65(14): 2124–2126

    Article  Google Scholar 

  106. Dubberstein T, Heller H P. Surface tension and density of liquid gold, silver, and tin. High Temperatures–High Pressures, 2015, 44 (5): 393–406

    Google Scholar 

  107. Yakimovich K A, Mozgovoi A G. Experimental investigation of the density and surface tension of molten lithium at temperatures up to 1300 K. High Temperature, 2000, 38(4): 657–659

    Article  Google Scholar 

  108. Fima P, Nowak R, Sobczak N. Effect of metal purity and testing procedure on surface tension measurements of liquid tin. Journal of Materials Science, 2010, 45(8): 2009–2014

    Article  Google Scholar 

  109. Ricci E, Arato E, Passerone A, Costa P. Oxygen tensioactivity on liquid-metal drops. Advances in Colloid and Interface Science, 2005, 117(1–3): 15–32

    Article  Google Scholar 

  110. Fima P. Surface tension and density of liquid Sn–Ag alloys. Applied Surface Science, 2011, 257(8): 3265–3268

    Article  Google Scholar 

  111. Fima P. Surface tension and density of liquid Sn–Cu alloys. Applied Surface Science, 2010, 257(2): 468–471

    Article  Google Scholar 

  112. Aqra F, Ayyad A, Takrori F. Model calculation of the surface tension of liquid Ga–Bi alloy. Applied Surface Science, 2011, 257 (8): 3577–3580

    Article  Google Scholar 

  113. Ricci E, Nanni L, Vizza M, Passerone A. Dynamic surface tension measurements of liquid metals in the presence of oxygen. In: International conference on high temperature capillarity HTC, Krakow, Poland: Foundry Research Institute,1997: 188–193

    Google Scholar 

  114. Ozawa S, Morohoshi K, Hibiya T, Fukuyama H. Influence of oxygen partial pressure on surface tension of molten silver. Journal of Applied Physics, 2010, 107(1): 014910

    Article  Google Scholar 

  115. Heiple C R. Mechanism for minor element effect on GTA fusion zone geometry. Welding Journal, 1982, 61(4): 97–102

    Google Scholar 

  116. Alchagirov B B, Dadashev R K, Dyshekova F F, Elimkhanov D Z. The surface tension of indium: methods and results of investigations. High Temperature, 2014, 52(6): 920–938

    Article  Google Scholar 

  117. Yuan Z F, Mukai K, Takagi K, Ohtaka M, Huang W L, Liu Q S. Surface tension and its temperature coefficient of molten tin determined with the sessile drop method at different oxygen partial pressures. Journal of Colloid and Interface Science, 2002, 254(2): 338–345

    Article  Google Scholar 

  118. Fiori L, Ricci E, Arato E. Dynamic surface tension measurements on molten metal-oxygen systems: model validation on molten tin. Acta Materialia, 2003, 51(10): 2873–2890

    Article  Google Scholar 

  119. Giuranno D, Ricci E, Arato E, Costa P. Dynamic surface tension measurements of an aluminium–oxygen system. Acta Materialia, 2006, 54(10): 2625–2630

    Article  Google Scholar 

  120. Ricci E, Lanata T, Giuranno D, Arato E. The effective oxidation pressure of indium-oxygen system. Journal of Materials Science, 2008, 43(9): 2971–2977

    Article  Google Scholar 

  121. Ricci E, Ratto M, Arato E, Costa P, Passerone A. A theoretical approach for the interpretation of liquid metal surface tension measurements in the presence of oxygen. Transactions of the Iron & Steel Institute of Japan, 2000, 40 (Suppl): S139–S143

    Article  Google Scholar 

  122. Ghetta V, Fouletier J, Chatain D. Oxygen adsorption isotherms at the surfaces of liquid Cu and Au-Cu alloys and their interfaces with Al2O3 detected by wetting experiments. Acta Materialia, 1996, 44 (5): 1927–1936

    Article  Google Scholar 

  123. Yuan Z, Fan J, Li J, Ke J, Mukai K. Surface tension of molten bismuth at different oxygen partial pressure with the sessile drop method. Scandinavian Journal of Metallurgy, 2004, 33(6): 338–346

    Article  Google Scholar 

  124. Abbasi M, Lee J, Shin M, Kim Y, Kang Y. Effect of oxygen adsorption on surface tension of liquid copper: experiments and thermodynamic models. Applied Surface Science, 2014, 313: 116–122

    Article  Google Scholar 

  125. Kasama A, Mclean A, Miller W A, Morita Z, Ward M J. Surface tension of liquid iron and iron-oxygen alloys. Canadian Metallurgical Quarterly, 1983, 22(1): 9–17

    Article  Google Scholar 

  126. Morohoshi K, Uchikoshi M, Isshiki M, Fukuyama H. Surface tension of liquid iron as functions of oxygen activity and temperature. ISIJ International, 2011, 51(10): 1580–1586

    Article  Google Scholar 

  127. SanSoucieM P, Rogers J R, Kumar V, Rodriguez J, Xiao X, Matson D M. Effects of environmental oxygen content and dissolved oxygen on the surface tension and viscosity of liquid nickel. International Journal of Thermophysics, 2016, 37: 76

    Article  Google Scholar 

  128. Fiori L, Ricci E, Arato E, Costa P. Dynamic surface tension measurements on a molten metal-oxygen system: the behaviour of the temperature coefficient of the surface tension of molten tin. Journal of Materials Science, 2005, 40(9): 2155–2159

    Article  Google Scholar 

  129. Ricci E, Passerone A, Joud J C. Thermodynamic study of adsorption in liquid metal-oxygen systems. Surface Science, 1988, 206(3): 533–553

    Article  Google Scholar 

  130. Shebzukhova M A, Shebzukhov Z A, Shebzukhov A A. The Tolman parameter, self-absorption, and surface tension on flat and curved surfaces of liquid metals. Bulletin of the Russian Academy of Sciences. Physics, 2010, 74(5): 697–704

    Article  MATH  Google Scholar 

  131. Tolman R C. The effect of droplet size on surface tension. Journal of Chemical Physics, 1949, 17(3): 333–337

    Article  Google Scholar 

  132. Lu H M, Jiang Q. Size dependent surface energy and surface tension. In: IEEE Conference on Emerging Technologies-Nanoelectronics, Singapore: IEEE, 2006: 21–24

    Chapter  Google Scholar 

  133. Shebzukhova M A, Shebzukhov A A. Surface energy and surface tension of liquid metal nanodrops. EPJ Web of Conferences. EDP Sciences, 2011, 15: 01027

    Article  Google Scholar 

  134. Vinš V, Fransen M, Hykl J, Hrubý J. Surface tension of supercooled water determined by using a counterpressure capillary rise method. Journal of Physical Chemistry B, 2015, 119(17): 5567–5575

    Article  Google Scholar 

  135. Ghatee M H, Ghazipour H. Highly accurate liquid–liquid interfacial tension measurement by a convenient capillary apparatus. Fluid Phase Equilibria, 2014, 377: 76–81

    Article  Google Scholar 

  136. Luo R, Zhang D, Zeng Z, Lytton R L. Effect of surface tension on the measurement of surface energy components of asphalt binders using the Wilhelmy plate method. Construction & Building Materials, 2015, 98: 900–909

    Article  Google Scholar 

  137. Soucková M, Klomfar J, Pátek J. Surface tension of 1-alkyl-3-methylimidazolium based ionic liquids with trifluoromethanesulfonate and tetrafluoroborate anion. Fluid Phase Equilibria, 2011, 303(2): 184–190

    Article  Google Scholar 

  138. Klomfar J, Soucková M, Pátek J. Surface tension measurements with validated accuracy for four 1-alkyl-3-methylimidazolium based ionic liquids. Journal of Chemical Thermodynamics, 2010, 42(3): 323–329

    Article  Google Scholar 

  139. Alkindi A S, Alwahaibi Y M, Muggeridge A H. Physical properties (density, excess molar volume, viscosity, surface tension, and refractive index) of ethanol + glycerol. Journal of Chemical & Engineering Data, 2008, 53(12): 2793–2796

    Article  Google Scholar 

  140. Fainerman V B, Miller R, Joos P. The measurement of dynamic surface tension by the maximum bubble pressure method. Colloid & Polymer Science, 1994, 272(6): 731–739

    Article  Google Scholar 

  141. Fainerman V B, Kazakov V N, Lylyk S V, Makievski A V, Miller R. Dynamic surface tension measurements of surfactant solutions using the maximum bubble pressure method — limits of applicability. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2004, 250(1–3): 97–102

    Article  Google Scholar 

  142. Sangiorgi R, Muolo M L, Chatain D, Eustathopoulos N. Wettability and work of adhesion of nonreactive liquid metals on silica. Journal of the American Ceramic Society, 1988, 71(9): 742–748

    Article  Google Scholar 

  143. Man K F. Surface tension measurements of liquid metals by the quasi-containerless pendant drop method. International Journal of Thermophysics, 2000, 21(3): 793–804

    Article  MathSciNet  Google Scholar 

  144. Vinet B, Garandet J P, Cortella L. Surface tension measurements of refractory liquid metals by the pendant drop method under ultrahigh vacuum conditions: extension and comments on Tate’s law. Journal of Applied Physics, 1993, 73(8): 3830–3834

    Article  Google Scholar 

  145. Keene B J, Mills K C, Brooks R F. Surface properties of liquid metals and their effects on weldability. Materials Science and Technology, 1985, 1(7): 559–567

    Article  Google Scholar 

  146. Takiguchi H, Nagasaka Y. Development of near-infrared laserinduced capillary wave method to measure viscosity and surface tension. Transactions of the Japan Society of Mechanical Engineers, 2013, 79(800): 690–700

    Article  Google Scholar 

  147. Osada R, Hoshino T, Okada K, Ohmasa Y, YaoM. Surface tension of room temperature ionic liquids measured by dynamic light scattering. Journal of Chemical Physics, 2009, 130(18): 184705

    Article  Google Scholar 

  148. Korkmaz S D, Korkmaz S. Investigation of surface properties of liquid transition metals: surface tension and surface entropy. Applied Surface Science, 2010, 257(1): 261–265

    Article  Google Scholar 

  149. Bashforth F, Adams J C. An Attempt to Test the Theories of Capillary Action: by Comparing the Theoretical and Measured Forms of Drops of Fluid with an Explanation of the Method of Integration Employed in Constucting the Tables Which Give the Theoretical Forms of Such Drops. Cambridge: Cambridge University Press, 1883

    Google Scholar 

  150. Andreas J, Hauser E, Tucker W. Boundary tension by pendant drops 1. Journal of Physical Chemistry, 1938, 42(8): 1001–1019

    Article  Google Scholar 

  151. Schaefers K, Kuppermann G, Thiedemann U, Qin J, Frohberg M. A new variant for measuring the surface tension of liquid metals and alloys by the oscillating drop method. International Journal of Thermophysics, 1996, 17(5): 1173–1179

    Article  Google Scholar 

  152. Pichon E, Nain D. A Laplace equation approach for shape comparison. Proceedings of SPIE–The International Society for Optics and Photonics, 2006, 6141: 614119

    Google Scholar 

  153. Naidich J V. The wettability of solids by liquid metals. Progress in Surface & Membrane Science, 1981, 14: 353–484

    Article  Google Scholar 

  154. Lee J, Kiyose A, Nakatsuka S, Nakamoto M, Tanaka T. Improvements in surface tension measurements of liquid metals having low capillary constants by the constrained drop method. ISIJ International, 2004, 44(11): 1793–1799

    Article  Google Scholar 

  155. Plevachuk Y, Sklyarchuk V, Gerbeth G, Eckert S, Novakovic R. Surface tension and density of liquid Bi–Pb, Bi–Sn and Bi–Pb–Sn eutectic alloys. Surface Science, 2011, 605(11–12): 1034–1042

    Article  Google Scholar 

  156. Sobczak N, Nowak R, Radziwill W, Budzioch J, Glenz A. Experimental complex for investigations of high temperature capillarity phenomena. Materials Science and Engineering A, 2008, 495(12): 43–49

    Article  Google Scholar 

  157. Liggieri L, Passerone A. An automatic technique for measuring the surface tension of liquid metals. High Temperature Technology, 1989, 7(2): 82–86

    Article  Google Scholar 

  158. Maze C, Burnet G. A non-linear regression method for calculating surface tension and contact angle from the shape of a sessile drop. Surface Science, 1969, 13(2): 451–470

    Article  Google Scholar 

  159. Aune R, Seetharaman S, Battezzati L, Egry I, Schmidt-Hohagen F, Etay J, Fecht H J, Wunderlich R, Passerone A, Ricci E, Novakovic R, Giuranno D. Surface tension measurements of Al-Ni based alloys from ground-based and parabolic flight experiments: results from the ThermoLab project. Microgravity Science and Technology, 2006, 18: 73

    Article  Google Scholar 

  160. Egry I, Brooks R, Hollandmoritz D, Novakovic R, Matsushita T, Ricci E, Seetharaman S, Wunderlich R, Jarvis D. Thermophysical properties of ?-titanium aluminide: the European IMPRESS Project. International Journal of Thermophysics, 2007, 28(3): 1026–1036

    Article  Google Scholar 

  161. Kucharski M, Fima P, Skrzyniarz P, Przebinda-Stefanowa W. Surface tension and density of Cu-Ag, Cu-In and Ag-In alloys. Archives of Metallurgy and Materials, 2006, 51(3): 389–397

    Google Scholar 

  162. Plevachuk Y, Hoyer W, Kaban I, Köhler M, Novakovic R. Experimental study of density, surface tension, and contact angle of Sn-Sb-based alloys for high temperature soldering. Journal of Materials Science, 2010, 45(8): 2051–2056

    Article  Google Scholar 

  163. Lee J, Le T H, Shin M. Density and surface tension of liquid Fe-Mn alloys. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 2011, 42(3): 546–549

    Article  Google Scholar 

  164. Brillo J, Plevachuk Y, Egry I. Surface tension of liquid Al–Cu–Ag ternary alloys. Journal of Materials Science, 2010, 45(19): 5150–5157

    Article  Google Scholar 

  165. Willner J, Siwiec G, Botor J. The surface tension of liquid Cu–Fe–Sb alloys. Applied Surface Science, 2010, 256(9): 2939–2943

    Article  Google Scholar 

  166. Guo Z, Hindler M, Yuan W, Mikula A. The density and surface tension of In–Sn and Cu–In–Sn alloys. Monatshefte für Chemie-Chemical Monthly, 2011, 142(6): 579–584

    Article  Google Scholar 

  167. Guo Z N, Li S, Mikula A, YuanWX. Surface tension of liquid Au-Bi-Sn alloys. Rare Metals, 2012, 31(3): 250–254

    Article  Google Scholar 

  168. Chentsov V P, Shevchenko V G, Mozgovoi A G, Pokrasin M A. Density and surface tension of heavy liquid-metal coolants: Gallium and indium. Inorganic Materials: Applied Research, 2011, 2(5): 468–473

    Article  Google Scholar 

  169. Novakovic R, Ricci E, Giuranno D, Passerone A. Surface and transport properties of Ag–Cu liquid alloys. Surface Science, 2005, 576(1–3): 175–187

    Article  Google Scholar 

  170. Egry I, Hollandmoritz D, Novakovic R, Ricci E, Wunderlich R, Sobczak N. Thermophysical properties of liquid AlTi-based alloys. International Journal of Thermophysics, 2010, 31(4): 949–965

    Article  Google Scholar 

  171. Nowak R, Lanata T, Sobczak N, Ricci E, Giuranno D, Novakovic R, Hollandmoritz D, Egry I. Surface tension of ?-TiAl-based alloys. Journal of Materials Science, 2010, 45(8): 1993–2001

    Article  Google Scholar 

  172. Ricci E, Giuranno D, Sobczak N. Further development of testing procedures for high temperature surface tension measurements. Journal of Materials Engineering and Performance, 2013, 22(11): 3381–3388

    Article  Google Scholar 

  173. Amore S, Giuranno D, Novakovic R, Ricci E, Nowak R, Sobczak N. Thermodynamic and surface properties of liquid Ge-Si alloys. Calphad-computer Coupling of Phase Diagrams & Thermochemistry, 2014, 44(1): 95–101

    Article  Google Scholar 

  174. Okress E C, Wroughton D M, Comenetz G, Brace P H, Kelly J C R. Electromagnetic levitation of solid and molten metals. Journal of Applied Physics, 1952, 23(5): 545–552

    Article  Google Scholar 

  175. Fraser M E, Lu W K, Hamielec A E, Murarka R. Surface tension measurements on pure liquid iron and nickel by an oscillating drop technique. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 1971, 2(3): 817–823

    Google Scholar 

  176. Murarka R, Lu W K, Hamielec A E. Surface tension of pure liquid and supercooled iron. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 1971, 2(10): 2949–2950

    Google Scholar 

  177. Murarka R N, Lu W K, Hamielec A E. Effect of dissolved oxygen on the surface tension of liquid iron. Canadian Metallurgical Quarterly, 1975, 14(2): 111–115

    Article  Google Scholar 

  178. Egry I, Ricci E, Novakovic R, Ozawa S. Surface tension of liquid metals and alloys–recent developments. Advances in Colloid and Interface Science, 2010, 159(2): 198–212

    Article  Google Scholar 

  179. Brillo J, Lohöfer G, Schmidt-Hohagen F, Schneider S, Egry I. Thermophysical property measurements of liquid metals by electromagnetic levitation. International Journal of Materials & Product Technology, 2006, 26(3/4): 247–273

    Article  Google Scholar 

  180. Egry I, Lohoefer G, Jacobs G. Surface tension of liquid metals: results from measurements on ground and in space. Physical Review Letters, 1995, 75(22): 4043–4046

    Article  Google Scholar 

  181. Cummings D L, Blackburn D A. Oscillations of magnetically levitated aspherical droplets. Journal of Fluid Mechanics, 1991, 224: 395–416

    Article  MATH  Google Scholar 

  182. Brillo J, Egry I, Matsushita T. Density and surface tension of liquid ternary Ni-Cu-Fe alloys. International Journal of Thermophysics, 2006, 97(1): 28–34

    Google Scholar 

  183. Brillo J, Egry I. Surface tension of nickel, copper, iron and their binary alloys. Journal of Materials Science, 2005, 40(9): 2213–2216

    Article  Google Scholar 

  184. Egry I, Brillo J. Surface tension and density of liquid metallic alloys measured by electromagnetic levitation. Journal of Chemical & Engineering Data, 2009, 54(9): 2347–2352

    Article  Google Scholar 

  185. Schmitz J, Brillo J, Egry I. Surface tension of liquid Cu and anisotropy of its wetting of sapphire. Journal of Materials Science, 2010, 45(8): 2144–2149

    Article  Google Scholar 

  186. Brillo J, Kolland G. Surface tension of liquid Al-Au binary alloys. Journal of Materials Science, 2016, 51(10): 4888–4901

    Article  Google Scholar 

  187. Brillo J, Egry I, Westphal J. Density and thermal expansion of liquid binary Al-Ag and Al-Cu alloys. International Journal of Materials Research, 2008, 99(2): 162–167

    Article  Google Scholar 

  188. Brillo J, Lauletta G, Vaianella L, Arato E, Giuranno D, Novakovic R, Ricci E. Surface tension of liquid Ag–Cu binary alloys. Transactions of the Iron & Steel Institute of Japan, 2014, 54(9): 2115–2119

    Article  Google Scholar 

  189. Wunderlich R K, Fecht H J. Surface tension and viscosity of NiAl catalytic precursor alloys from microgravity experiments. International Journal of Materials Research, 2011, 102(9): 1164–1173

    Article  Google Scholar 

  190. Amore S, Brillo J, Egry I, Novakovic R. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling. Applied Surface Science, 2011, 257 (17): 7739–7745

    Article  Google Scholar 

  191. Zhou K, Wang H P, Chang J, Wei B. Surface tension measurement of metastable liquid Ti–Al–Nb alloys. Applied Physics A, Materials Science & Processing, 2011, 105(1): 211–214

    Article  Google Scholar 

  192. Chang J, Wang H P, Zhou K, Wei B. Surface tension measurement of undercooled liquid Ni-based multicomponent alloys. Philosophical Magazine Letters, 2012, 92(9): 428–435

    Article  Google Scholar 

  193. Egry I, Lohöfer G, Neuhaus P, Sauerland S. Surface tension measurements of liquid metals using levitation, microgravity, and image processing. International Journal of Thermophysics, 1992, 13(1): 65–74

    Article  Google Scholar 

  194. Egry I. Surface tension measurements of liquid metals by the oscillating drop technique. Journal of Materials Science, 1991, 26 (11): 2997–3003

    Article  Google Scholar 

  195. Egry I, Lohoefer G, Schwartz E, Szekely J, Neuhaus P. Surface tension measurements on liquid metals in microgravity. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 1998, 29(5): 1031–1035

    Article  Google Scholar 

  196. Ohnishi M, Nagasaka Y. Measurement of surface tension and viscosity of molten lithium niobate by the surface laser-light scattering method. High Temperatures—High Pressures, 2000, 32 (1): 103–108

    Article  Google Scholar 

  197. Levich V G. Physicochemical Hydrodynamics. New Jersey: Prentice Hall, 1962

    Google Scholar 

  198. Nagasaka Y, Kobayashi Y. Effect of atmosphere on the surface tension and viscosity of molten LiNbO3 measured using the surface laser-light scattering method. Journal of Crystal Growth, 2007, 307(1): 51–58

    Article  Google Scholar 

  199. Wang F K, Yue H Y, Fan X W, Liu Z G. Surface tension and viscosity measurement with surface laser light scattering method. Thermal Science, 2013, 17(5): 1467–1471

    Article  Google Scholar 

  200. Ayyad A, Aqra F. Theoretical consideration of the anomalous temperature dependence of the surface tension of pure liquid gallium. Theoretical Chemistry Accounts, 2010, 127(5): 443–448

    Article  Google Scholar 

  201. Ayyad A, Mechdiev I, Freyland W. Light scattering study of surface freezing and surface viscoelasticity in a eutectic liquid Ga–Bi alloy. Chemical Physics Letters, 2002, 359(3–4): 326–330

    Article  Google Scholar 

  202. Minami Y. Surface tension measurement of liquid metal with inelastic light-scattering spectroscopy of a thermally excited capillary wave. Applied Physics B, Lasers and Optics, 2014, 117 (3): 969–972

    Article  Google Scholar 

  203. Osada R, Hoshino T, Okada K, Ohmasa Y, YaoM. Surface tension of room temperature ionic liquids measured by dynamic light scattering. Journal of Chemical Physics, 2009, 130(18): 184705

    Article  Google Scholar 

  204. Kirby B J. Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge: Cambridge University Press, 2010

    Book  MATH  Google Scholar 

  205. Chang H C, Yeo L Y. Electrokinetically Driven Microfluidics and Nanofluidics. Cambridge: Cambridge University Press, 2010

    Google Scholar 

  206. Hong J S, Ko S H, Kang K H, Kang I S. A numerical investigation on AC electrowetting of a droplet. Microfluidics and Nanofluidics, 2008, 5(2): 263–271

    Article  Google Scholar 

  207. Berry S, Kedzierski J, Abedian B. Low voltage electrowetting using thin fluoroploymer films. Journal of Colloid and Interface Science, 2006, 303(2): 517–524

    Article  Google Scholar 

  208. Shamai R, Andelman D, Berge B, Hayes R. Water, electricity, and between … on electrowetting and its applications. Soft Matter, 2008, 4(1): 38–45

    Article  Google Scholar 

  209. Thomas D, AudryMC, Thibaut RM, Kleimann P, Chassagneux F, Maillard M, Brioude A. Charge injection in dielectric films during electrowetting actuation under direct current voltage. Thin Solid Films, 2015, 590: 224–229

    Article  Google Scholar 

  210. Klarman D, Andelman D, Urbakh M. A model of electrowetting, reversed electrowetting, and contact angle saturation. Langmuir, 2011, 27(10): 6031–6041

    Article  Google Scholar 

  211. Monroe CW, Daikhin L, Urbakh M, Kornyshev A. Electrowetting with an interface between two immiscible electrolytic solutions. In: 210th ECS Meeting. Cancun, Mexico: ECS, 2006: 43

  212. Monroe C W, Daikhin L I, Urbakh M, Kornyshev A A. Electrowetting with electrolytes. Physical Review Letters, 2006, 97(13): 136102

    Article  Google Scholar 

  213. Jones T B, Fowler J D, Chang Y S, Kim C J. Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir, 2003, 19(18): 7646–7651

    Article  Google Scholar 

  214. Kang K H. How electrostatic fields change contact angle in electrowetting. Langmuir, 2002, 18(26): 10318–10322

    Article  Google Scholar 

  215. Mugele F, Baret J C. Electrowetting: from basics to applications. Journal of Physics Condensed Matter, 2005, 17(28): R705–R774

    Article  Google Scholar 

  216. Sedev R. Electrowetting: electrocapillarity, saturation, and dynamics. European Physical Journal. Special Topics, 2011, 197 (1): 307–319

    Article  Google Scholar 

  217. Wang K L, Jones T B. Saturation effects in dynamic electrowetting. Applied Physics Letters, 2005, 86(5): 054104

    Article  Google Scholar 

  218. Shapiro B, Moon H, Garrell R L, Kim C J. Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. Journal of Applied Physics, 2003, 93(9): 5794–5811

    Article  Google Scholar 

  219. Yang X H, Tan S C, Yuan B, Liu J. Alternating electric field actuated oscillating behavior of liquid metal and its application. Science China Technological Sciences, 2016, 59(4): 597–603

    Article  Google Scholar 

  220. Tan S C, Zhou Y X,Wang L, Liu J. Electrically driven chip cooling device using hybrid coolants of liquid metal and aqueous solution. Science China Technological Sciences, 2016, 59(2): 301–308

    Article  Google Scholar 

  221. Lee J, Moon H, Fowler J, Schoellhammer T, Kim C J. Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors and Actuators A: Physical, 2002, 95(2–3): 259–268

    Article  Google Scholar 

  222. Yun K S, Cho I J, Bu J U, Kim C J. A surface-tension driven micropump for low-voltage and low-power operations. Journal of Microelectromechanical Systems, 2002, 11(5): 454–461

    Article  Google Scholar 

  223. Lee J, Kim C J C. Liquid micromotor driven by continuous electrowetting. In: Proceedings of 11th Annual International Workshop on Micro Electro Mechanical Systems. Heidelberg, Germany: IEEE, 1998: 538–543

    Google Scholar 

  224. Lee H J, Kim C J. Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems, 2000, 9(2): 171–180

    Article  Google Scholar 

  225. Ni J, Zhong C J, Coldiron S J, Porter M D. Electrochemically actuated mercury pump for fluid flow and delivery. Analytical Chemistry, 2001, 73(1): 103–110

    Article  Google Scholar 

  226. Pollack M G, Fair R B, Shenderov A D. Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 2000, 77(11): 1725–1726

    Article  Google Scholar 

  227. Yi U C, Kim C J. Characterization of electrowetting actuation on addressable single-side coplanar electrodes. Journal of Micromechanics and Microengineering, 2006, 16(10): 2053–2059

    Article  Google Scholar 

  228. Accardo A, Mecarini F, Leoncini M, Brandi F, Di Cola E, Burghammer M, Riekel C, Di Fabrizio E. Fast, active droplet interaction: coalescence and reactive mixing controlled by electrowetting on a superhydrophobic surface. Lab on a Chip, 2013, 13(3): 332–335

    Article  Google Scholar 

  229. Krupenkin T, Taylor J A. Reverse electrowetting as a new approach to high-power energy harvesting. Nature Communications, 2011, 2: 448

    Article  Google Scholar 

  230. Moon J K, Jeong J, Lee D, Pak H K. Electrical power generation by mechanically modulating electrical double layers. Nature Communications, 2013, 4: 1487

    Article  Google Scholar 

  231. Thramann J. Generation of electrical energy in a ski or snowboard. US Patent No. 9024462, 2015

    Google Scholar 

  232. Berge B, Peseux J. Variable focal lens controlled by an external voltage: an application of electrowetting. European Physical Journal E, 2000, 3(2): 159–163

    Article  Google Scholar 

  233. Kuiper S, Hendriks B H W. Variable-focus liquid lens for miniature cameras. Applied Physics Letters, 2004, 85(7): 1128–1130

    Article  Google Scholar 

  234. Hayes R A, Feenstra B J. Video-speed electronic paper based on electrowetting. Nature, 2003, 425(6956): 383–385

    Article  Google Scholar 

  235. You H, Steckl A J. Three-color electrowetting display device for electronic paper. Applied Physics Letters, 2010, 97(2): 023514

    Article  Google Scholar 

  236. Feenstra B J, Hayes R A, Van Dijk R, Boom R G H. Electrowetting-based displays: bringing microfluidics alive onscreen. In: 19th IEEE International Conference on Micro Electro Mechanical Systems. Istanbul, Turkey: IEEE, 2006: 48–53

    Chapter  Google Scholar 

  237. Fair R B, Khlystov A, Tailor T D, Ivanov V, Evans R D, Srinivasan V, Pamula V K, Pollack M G, Griffin P B, Zhou J. Chemical and biological applications of digital-microfluidic devices. IEEE Design & Test of Computers, 2007, 24(1): 10–24

    Article  Google Scholar 

  238. Cho S K, Moon H, Kim C J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003, 12(1): 70–80

    Article  Google Scholar 

  239. Yu Y, Wang Q, Yi L, Liu J. Channelless fabrication for large-scale preparation of room temperature liquid metal droplets. Advanced Engineering Materials, 2014, 16(2): 255–262

    Article  Google Scholar 

  240. Sheng L, He Z Z, Yao Y Y, Liu J. Transient state machine enabled from the colliding and coalescence of a swarm of autonomously running liquid metal motors. Small, 2015, 11(39): 5253–5261

    Article  Google Scholar 

  241. Gao W, Pei A, Wang J. Water-driven micromotors. ACS Nano, 2012, 6(9): 8432–8438

    Article  Google Scholar 

  242. Yuan B, Wang L, Yang X H, Ding Y J, Tan S C, Yi L T, He Z Z, Liu J. Liquid metal machine triggered violin-like wire oscillator. 2016, 3(10): 1600212

    Google Scholar 

  243. Monroe C W, Daikhin L I, Urbakh M, Kornyshev A A. Principles of electrowetting with two immiscible electrolytic solutions. Journal of Physics Condensed Matter, 2006, 18(10): 2837–2869

    Article  Google Scholar 

  244. Grahame D C. The electrical double layer and the theory of electrocapillarity. Chemical Reviews, 1947, 41(3): 441–501

    Article  Google Scholar 

  245. Kornyshev A A, Kucernak A R, Marinescu M, Monroe C W, Sleightholme A E S, Urbakh M. Ultra-low-voltage electrowetting. Journal of Physical Chemistry C, 2010, 114(35): 14885–14890

    Article  Google Scholar 

  246. Yao Y Y, Liu J. Liquid metal wheeled small vehicle for cargo delivery. Royal Scoiety of Chemistry Advances, 2016, 6: 56482–56488

    Google Scholar 

  247. Yuan B, Tan S C, Zhou Y X, Liu J. Self-powered macroscopic Brownian motion of spontaneously running liquid metal motors. Chinese Science Bulletin, 2015, 60(13): 1203–1210

    Google Scholar 

  248. Fang W Q, He Z Z, Liu J. Electro-hydrodynamic shooting phenomenon of liquid metal stream. Applied Physics Letters, 2014, 105(13): 134104

    Article  Google Scholar 

  249. Tang S Y, Lin Y, Joshipura I D, Khoshmanesh K, Dickey M D. Steering liquid metal flow in microchannels using low voltages. Lab on a Chip, 2015, 15(19): 3905–3911

    Article  Google Scholar 

  250. Tang S Y, Sivan V, Khoshmanesh K, O’mullane A P, Tang X, Gol B, Eshtiaghi N, Lieder F, Petersen P, Mitchell A, Kalantar-zadeh K. Electrochemically induced actuation of liquid metal marbles. Nanoscale, 2013, 5(13): 5949–5957

    Article  Google Scholar 

  251. Chrimes A F, Berean K J, Mitchell A, Rosengarten G, Kalantar-Zadeh K. Controlled electrochemical deformation of liquid-phase gallium. ACS Applied Materials & Interfaces, 2016, 8(6): 3833–3839

    Article  Google Scholar 

  252. Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies. Advanced Materials, 2014, 26 (34): 6036–6042

    Article  Google Scholar 

  253. Wang L, Liu J. Liquid metal folding patterns induced by electric capillary force. Applied Physics Letters, 2016, 108(16): 161602

    Article  Google Scholar 

  254. Mohammed M, Sundaresan R, Dickey M D. Self-running liquid metal drops that delaminate metal films at record velocities. ACS Applied Materials & Interfaces, 2015, 7(41): 23163–23171

    Article  Google Scholar 

  255. Hirsch A, Michaud H O, Gerratt A P, De Mulatier S V, Lacour S P. Intrinsically stretchable biphasic (solid–liquid) thin metal films. Advanced Materials, 2016, 28(22): 4507–4512

    Article  Google Scholar 

  256. Zheng Y, He Z Z, Yang J, Liu J. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Scientific Reports, 2014, 4: 4588

    Article  Google Scholar 

  257. Zheng Y, He Z Z, Gao Y X, Liu J. Direct desktop printed-circuitson-paper flexible electronics. Scientific Reports, 2013, 3: 1786

    Article  Google Scholar 

  258. Wang Q, Yu Y, Yang J, Liu J. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Advanced Materials, 2015, 27(44): 7109–7116

    Article  Google Scholar 

  259. Zheng Y, Zhang Q, Liu J. Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Advances, 2013, 3 (11): 112117

    Article  Google Scholar 

  260. Gao Y X, Li H Y, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One, 2012, 7(9): e45485

    Article  Google Scholar 

  261. Yu Y, Zhang J, Liu J. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS One, 2013, 8 (3): e58771

    Article  Google Scholar 

  262. Guo C R, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask. Journal of Materials Chemistry B, Materials for Biology and Medicine, 2014, 2(35): 5739–5745

    Article  Google Scholar 

  263. Zrnic D, Swatik D. On the resistivity and surface tension of the eutectic alloy of gallium and indium. Journal of the Less Common Metals, 1969, 18(1): 67–68

    Article  Google Scholar 

  264. Dickey M D, Chiechi R C, Larsen R J, Weiss E A, Weitz D A, Whitesides G M. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials, 2008, 18(7): 1097–1104

    Article  Google Scholar 

  265. Boley J W, White E L, Chiu G T C, Kramer R K. Direct writing of gallium-indium alloy for stretchable electronics. Advanced Functional Materials, 2014, 24(23): 3501–3507

    Article  Google Scholar 

  266. Xu Q, Oudalov N, Guo Q, Jaeger H M, Brown E. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Physics of Fluids, 2012, 24(6): 063101

    Article  Google Scholar 

  267. Larsen R J, Dickey MD, Whitesides G M,Weitz D A. Viscoelastic properties of oxide-coated liquid metals. Journal of Rheology (New York, N.Y.), 2009, 53(6): 1305–1326

    Google Scholar 

  268. Jin C, Zhang J, Li X K, Yang X Y, Li J J, Liu J. Injectable 3-D fabrication of medical electronics at the target biological tissues. Scientific Reports, 2013, 3: 3442

    Article  Google Scholar 

  269. Zhang J, Sheng L, Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Scientific Reports, 2014, 4: 7116

    Article  Google Scholar 

  270. Gough R C, Dang J H, Moorefield M R, Zhang G B, Hihara L H, Shiroma W A, Ohta A T. Self-actuation of liquid metal via redox reaction. ACS Applied Materials & Interfaces, 2016, 8(1): 6–10

    Article  Google Scholar 

  271. Shen W, Edwards R T, Kim C J. Electrostatically actuated metaldroplet microswitches integrated on CMOS chip. Journal of Microelectromechanical Systems, 2006, 15(4): 879–889

    Article  Google Scholar 

  272. Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z. 25th anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progress. Advanced Materials, 2013, 25(42): 5997–6038

    Article  Google Scholar 

  273. Park Y L, Chen B R, Wood R J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sensors Journal, 2012, 12(8): 2711–2718

    Article  Google Scholar 

  274. Kramer R K, Majidi C, Wood R J. Wearable tactile keypad with stretchable artificial skin. In: IEEE International Conference on Robotics & Automation, IEEE, 2011: 1103–1107

    Google Scholar 

  275. Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Advanced Materials, 2014, 26(1): 149–162

    Article  Google Scholar 

  276. Hu L, Wang L, Ding Y J, Zhan S H, Liu J. Manipulation of liquid metals on a graphite surface. Advanced Materials, 2016, 28(41): 9210–9217

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Ministry of Education Equipment Development Fund, Dean’s Research Funding and the Frontier Project of the Chinese Academy of Sciences, as well as Beijing Municipal Science (Grant No. Z151100003715002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Xu, S. & Liu, J. Surface tension of liquid metal: role, mechanism and application. Front. Energy 11, 535–567 (2017). https://doi.org/10.1007/s11708-017-0463-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-017-0463-9

Keywords

Navigation