Skip to main content
Log in

A numerical investigation on AC electrowetting of a droplet

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We numerically analyze the AC electric field around a droplet placed on an insulator-covered electrode. The time-averaged effective electrical wetting tension, which is a function of AC frequency, is computed by integrating the Maxwell stress. The computed wetting tension is compared with the experimental result converted from the separately obtained contact-angle data. There is a good agreement between the two results at a low-frequency range and a qualitative agreement at a high-frequency range. Interestingly, the numerical results show that the electric-field strength decreases remarkably in the insulating layer near the TCL as the AC frequency increases. This decrease may account for the delay of the dielectric breakdown of an insulating layer in the AC case, which could be related to the contact-angle saturation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3(2):159–163

    Article  Google Scholar 

  • Berim GO, Ruckenstein E (2005) Microscopic interpretation of the dependence of the contact angle on roughness. Langmuir 21(17):7743–7751

    Article  Google Scholar 

  • Bienia M, Vallade M, Quilliet C, Mugele F (2006) Electrical-field-induced curvature increase on a drop of conducting liquid. Europhys Lett 74(1):103–106

    Article  Google Scholar 

  • Blake TD, Clarke A, Stattersfield EH (2000) An investigation of electrostatic assist in dynamic wetting. Langmuir 16(6):2928–2935

    Article  Google Scholar 

  • Buehrle J, Herminghaus S, Mugele F (2003) Interface profiles near three-phase contact lines in electric fields. Phys Rev Lett 91(8):086101

    Article  Google Scholar 

  • Cho SK, Moon HJ, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80

    Article  Google Scholar 

  • Haus HA, Melcher JR (1989). Electromagnetic fields and energy. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425(6956):383–385

    Article  Google Scholar 

  • Jackson JD (1999). Classical electrodynamics. Wiley, Hoboken

    MATH  Google Scholar 

  • Jones TB (2002) On the relationship of dielectrophoresis and electrowetting. Langmuir 18(11):4437–4443

    Article  Google Scholar 

  • Jones TB, Fowler JD, Chang YS, Kim CJ (2003) Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 19(18):7646–7651

    Article  Google Scholar 

  • Jones TB, Wang KL, Yao DJ (2004) Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis. Langmuir 20(7):2813–2818

    Article  Google Scholar 

  • Kang KH (2002) How electrostatic fields change contact angle in electrowetting. Langmuir 18(26):10318–10322

    Article  Google Scholar 

  • Kang KH, Kang IS, Lee CM (2003) Wetting tension due to Coulombic interaction in charge-related wetting phenomena. Langmuir 19(13):5407–5412

    Article  MathSciNet  Google Scholar 

  • Kedzierski J, Berry S (2006) Engineering the electrocapillary behavior of electrolyte droplets on thin fluoropolymer films. Langmuir 22(13):5690–5696

    Article  Google Scholar 

  • Ko SH, Lee H, Kang KH (2007) Hydrodynamic flows in electrowetting. Langmuir (in press)

  • Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85(7):1128–1130

    Article  Google Scholar 

  • Kumar A, Pluntke M, Cross B, Baret JC, Mugele F (2006) Finite conductivity effects and apparent contact angle saturation in AC electrowetting. Mater Res Soc Symp Proc 0899-N06-01.1–0899-N06-01.8

  • Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705–R774

    Article  Google Scholar 

  • Mugele F, Baret JC, Steinhauser D (2006) Microfluidic mixing through electrowetting-induced droplet oscillations. Appl Phys Lett 88:204106

    Article  Google Scholar 

  • Papathanasiou AG, Boudouvis AG (2005) Manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl Phys Lett 86:164102

    Article  Google Scholar 

  • Peykov V, Quinn A, Ralston J (2000) Electrowetting: a model for contact-angle saturation. Colloid Polym Sci 278(8):789–793

    Article  Google Scholar 

  • Quilliet C, Berge B (2001) Electrowetting: a recent outbreak. Curr Opin Colloid Interface Sci 6(1):34–39

    Article  Google Scholar 

  • Quinn A, Sedev R, Ralston J (2005) Contact angle saturation in electrowetting. J Phys Chem B 109(13):6268–6275

    Article  Google Scholar 

  • Seyrat E, Hayes RA (2001) Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting. J Appl Phys 90(3):1383–1386

    Article  Google Scholar 

  • Shapiro B, Moon H, Garrell RL, Kim CJ (2003) Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. J Appl Phys 93(9):5794–5811

    Article  Google Scholar 

  • Vallet M, Berge B, Vovelle L (1996) Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer 37(12):2465–2470

    Article  Google Scholar 

  • Vallet M, Vallade M, Berge B (1999) Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur Phys J B 11(4):583–591

    Article  Google Scholar 

  • Verheijen HJJ, Prins MWJ (1999) Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15(20):6616–6620

    Article  Google Scholar 

  • Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4(4):265–277

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Center for Ultramicrochemical Process Systems sponsored by KOSEF. This work was also supported by the grant R01-2001-00410 from KOSEF and the grant by BK21 program of Ministry of Education of Korea. The authors greatly acknowledge the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwan Hyoung Kang or In Seok Kang.

Appendices

Appendix 1: Time average of the Maxwell stress and the RMS electric-field strength

There is the following time-average theorem for the two time-harmonic complex variables of \( u = \text{Re} \{ \ifmmode\expandafter\tilde\else\expandafter\sim \fi{u}e{}^{{j\omega t}}\} \) and \( v = \text{Re} \{ \ifmmode\expandafter\tilde\else\expandafter\sim \fi{v}e{}^{{j\omega t}}\} \) (Jackson 1999):

$$ {\left\langle {u\,v} \right\rangle } = \frac{1} {2}\text{Re} \{ \ifmmode\expandafter\tilde\else\expandafter\sim \fi{u}\, \ifmmode\expandafter\tilde\else\expandafter\sim \fi{v}^{*} \} . $$
(10)

Here, the bracket \( {\left\langle {\text{ }} \right\rangle } \) denotes the time average and the superscript ‘*’ a complex conjugate. The directional vectors are time-independent, so that the time average of the electrical stress in r-direction in Eq. (8) can be rewritten as

$$ {\left\langle {{\left( {{\mathbf{T}} \cdot {\mathbf{n}}} \right)} \cdot {\mathbf{e}}_{{\text{r}}} } \right\rangle } = {\left( {{\left\langle {\mathbf{T}} \right\rangle } \cdot {\mathbf{n}}} \right)} \cdot {\mathbf{e}}_{{\text{r}}} . $$
(11)

The time average of the Maxwell stress tensor becomes from Eq. (10),

$$ {\left\langle {\mathbf{T}} \right\rangle } = \frac{1} {2}\text{Re} {\left\{ { - \frac{1} {2}\varepsilon ({\tilde{\bf{E}}} \cdot {\tilde{\bf{E}}}^{*} ){\mathbf{I}} + \varepsilon {\tilde{\bf{E}}}{\tilde{\bf{E}}}^{*} } \right\}}. $$
(12)

The complex electric field is decomposed as \( {{\tilde{\bf{E}}}} = \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{r} {\mathbf{e}}_{r} + \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{z} {\mathbf{e}}_{z} \) which is substituted into Eq. (12) to obtain

$$ {\left\langle {\mathbf{T}} \right\rangle } = \frac{1} {2}\text{Re} {\left\{ { - \frac{1} {2}\varepsilon ( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{r} \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}^{*}_{r} + \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{z} \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}^{*}_{z} ){\mathbf{I}} + \varepsilon ( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{r} {\mathbf{e}}_{r} + \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{z} {\mathbf{e}}_{z} )( \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}^{*}_{r} {\mathbf{e}}_{r} + \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}^{*}_{z} {\mathbf{e}}_{z} )} \right\}}. $$
(13)

The time-averaged Maxwell stress in Eq. (13) is substituted to Eq. (11) and normal vector is decomposed as n r e r+n z e z . Then the following result is obtained:

$$ {\left\langle {{\left( {{\mathbf{T}} \cdot {\mathbf{n}}} \right)} \cdot {\mathbf{e}}_{{\text{r}}} } \right\rangle } = \frac{1} {2}\text{Re} {\left\{ {\varepsilon \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}^{*}_{r} {\left( { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{r} n_{r} + \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{z} n_{z} } \right)} - \frac{1} {2}\varepsilon {\left( { \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{r} \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}^{*}_{r} + \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}_{z} \ifmmode\expandafter\tilde\else\expandafter\sim \fi{E}^{*}_{z} } \right)}n_{r} } \right\}}. $$
(14)

Similarly, the RMS electric-field strength becomes

$$ E_{{rms}} = {\sqrt {{\left\langle {{\mathbf{E}} \cdot {\text{ }}{\mathbf{E}}} \right\rangle }} } = {\sqrt {\tfrac{1} {2}\text{Re} \{ {{\tilde{\bf{E}}}} \cdot {\tilde{\bf{E}}}^{*} \} } } = {\sqrt {E^{2}_{{r,rms}} + E^{2}_{{z,rms}} .} } $$
(15)

Appendix 2: Average value of the Maxwell stress just below the TCL

We introduce the control surface Σ = SS 1S 2···S 5 as shown in Fig. 13. Here, S denotes the surface used to obtain the average value in the numerical analysis. The conservation of electromagnetic momentum condition for the domain enclosed by Σ is written as follows (Kang et al. 2003):

$$ {\int \limits_\Sigma {{\mathbf{T}} \cdot {\mathbf{n}}\;dS} } = {\int \limits_S {{\mathbf{T}} \cdot {\mathbf{n}}\;dS} } + {\int \limits_{S_{{\text{1}}} \cup S_{2} \cdots S_{5} } {{\mathbf{T}} \cdot {\mathbf{n}}\;dS} } = 0. $$
(16)

Here, n the outward normal vector for each surface. By using Eq. (16), one can calculate the force exerted on the surface S from the sum of the forces acting on other surfaces, that is,

$$ {\int \limits_S {{\mathbf{T}} \cdot {\mathbf{n}}\;dS} } = - {\int \limits_{S_{{\text{1}}} \cup S_{2} \cdots S_{5} } {{\mathbf{T}} \cdot {\mathbf{n}}\;dS}.} $$
(17)

The average force acting on S can be also expressed as follows:

$$ {\left\langle {{\mathbf{T}} \cdot {\mathbf{n}}} \right\rangle }_{S} = \frac{1} {S}{\int \limits_S {{\mathbf{T}} \cdot {\mathbf{n}}\;dS} } = - \frac{1} {S}{\int \limits_{S_{{\text{1}}} \cup S_{2} \cdots S_{5} } {{\mathbf{T}} \cdot {\mathbf{n}}\;dS}.} $$
(18)

It is quite clear the electric fields on the surfaces S 1, S 3 and S 5, which are nonzero contributions, have well-defined finite values. In conclusion, the average stress near the TCL is finite and then the average electric field is also finite.

Fig. 13
figure 13

Control surface for calculation of average stress just below the TCL

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J.S., Ko, S.H., Kang, K.H. et al. A numerical investigation on AC electrowetting of a droplet. Microfluid Nanofluid 5, 263–271 (2008). https://doi.org/10.1007/s10404-007-0246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0246-4

Keywords

Navigation