Skip to main content
Log in

Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni−Sn intermetallic compounds with methanol as hydrogen donor

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Porous carbon-encapsulated Ni and Ni–Sn intermetallic compound catalysts were prepared by the one-pot extended Stöber method followed by carbonization and tested for in-situ hydrothermal deoxygenation of methyl palmitate with methanol as the hydrogen donor. During the catalyst preparation, Sn doping reduces the size of carbon spheres, and the formation of Ni–Sn intermetallic compounds restrain the graphitization, contributing to larger pore volume and pore diameter. Consequently, a more facile mass transfer occurs in carbon-encapsulated Ni-Sn intermetallic compound catalysts than in carbon-encapsulated Ni catalysts. During the in-situ hydrothermal deoxygenation, the synergism between Ni and Sn favors palmitic acid hydrogenation to a highly reactive hexadecanal that easily either decarbonylate to n-pentadecane or is hydrogenated to hexadecanol. At high reaction temperature, hexadecanol undergoes dehydrogenation-decarbonylation, generating n-pentadecane. Also, the C-C bond hydrolysis and methanation are suppressed on Ni-Sn intermetallic compounds, favorable for increasing the carbon yield and reducing the H2 consumption. The n-pentadecane and n-hexadecane yields reached 88.1% and 92.8% on carbon-encapsulated Ni3Sn2 intermetallic compound at 330 °C. After washing and H2 reduction, the carbon-encapsulated Ni3Sn2 intermetallic compound remains stable during three recycling cycles. This is ascribed to the carbon confinement that effectively suppresses the sintering and loss of metal particles under harsh hydrothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kordulis C, Bourikas K, Gousi M, Kordouli E, Lycourghiotis A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Applied Catalysis B: Environmental, 2016, 181: 156–196

    Article  CAS  Google Scholar 

  2. Pan D, Zhou J, Peng B, Wang S, Zhao Y, Ma X. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Frontiers of Chemical Science and Engineering, 2022, 16(3): 397–407

    Article  CAS  Google Scholar 

  3. Zhang J, Kong L, Chen Y, Huang H, Zhang H, Yao Y, Xu Y, Xu Y, Wang S, Ma X, Zhao Y. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15(3): 666–678

    Article  CAS  Google Scholar 

  4. Hegde V, Pandit P, Rananaware P, Brahmkhatri V P. Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production. Frontiers of Chemical Science and Engineering, 2022, 16(8): 1198–1210

    Article  CAS  Google Scholar 

  5. Yao X Y, Strathmann T J, Li Y L, Cronmiller L E, Ma H L, Zhang J. Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons: a review. Green Chemistry, 2021, 23(3): 1114–1129

    Article  CAS  Google Scholar 

  6. Chai S Q, Zhang G J, Li G Q, Zhang Y F. Industrial hydrogen production technology and development status in China: a review. Clean Technologies and Environmental Policy, 2021, 23(7): 1931–1946

    Article  Google Scholar 

  7. Zhang Z, Yang Q, Chen H, Chen K, Lu X, Ouyang P, Fu J, Chen J G. In situ hydrogenation and decarboxylation of oleic acid into heptadecane over a Cu-Ni alloy catalyst using methanol as a hydrogen carrier. Green Chemistry, 2018, 20(1): 197–205

    Article  CAS  Google Scholar 

  8. Ai L, Shi Y, Han Y, Chen J. In situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons on Ni catalyst derived from the reduction of LaNiO3 perovskite. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133(1): 209–227

    Article  CAS  Google Scholar 

  9. Shi Y, Ai L, Shi H, Gu X, Han Y, Chen J. Carbon-coated Ni−Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor. Frontiers of Chemical Science and Engineering, 2022, 16(4): 443–460

    Article  CAS  Google Scholar 

  10. Hollak S A W, Ariëns M A, de Jong K P, van Es D S. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming. ChemSusChem, 2014, 7(4): 1057–1062

    Article  CAS  PubMed  Google Scholar 

  11. Vardon D R, Sharma B K, Jaramillo H, Kim D, Choe J K, Ciesielski P N, Strathmann T J. Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chemistry, 2014, 16(3): 1507–1520

    Article  CAS  Google Scholar 

  12. Zhang J, Huo X, Li Y, Strathmann T J. Catalytic hydrothermal decarboxylation and cracking of fatty acids and lipids over Ru/C. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14400–14410

    Article  CAS  Google Scholar 

  13. Miao C, Marin-Flores O, Dong T, Gao D, Wang Y, Garcia-Pérez M, Chen S. Hydrothermal catalytic deoxygenation of fatty acid and bio-oil with in situ H2. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4521–4530

    Article  CAS  Google Scholar 

  14. Miao C, Marin-Flores O, Davidson S D, Li T, Dong T, Gao D, Wang Y, Garcia-Pérez M, Chen S. Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst. Fuel, 2016, 166: 302–308

    Article  CAS  Google Scholar 

  15. Liu X, Yang M, Deng Z, Dasgupta A, Guo Y. Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst: mechanism and kinetic modeling. Chemical Engineering Journal, 2021, 407: 126332

    Article  CAS  Google Scholar 

  16. Kouzu M, Kojima M, Mori K, Yamanaka S. Catalytic deoxygenation of triglyceride into drop-in fuel under hydrothermal condition with the help of in-situ hydrogen production by APR of glycerol by-produced. Fuel Processing Technology, 2021, 217: 106831

    Article  CAS  Google Scholar 

  17. Zhang J, Tian F, Chen J, Shi Y, Cao H, Ning P, Sun S, Xie Y. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts. Frontiers of Chemical Science and Engineering, 2021, 15(2): 288–298

    Article  CAS  Google Scholar 

  18. Lin L, Yu Q, Peng M, Li A, Yao S, Tian S, Liu X, Li A, Jiang Z, Gao R, Han X, Li Y, Wen X, Zhou W, Ma D. Atomically dispersed Ni/α-MoC catalyst for hydrogen production from methanol/water. Journal of the American Chemical Society, 2021, 143(1): 309–317

    Article  CAS  PubMed  Google Scholar 

  19. Huber G W, Shabaker J W, Dumesic J A. Raney Ni−Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 2003, 300(5628): 2075–2077

    Article  CAS  PubMed  Google Scholar 

  20. Zhao N, Zheng Y, Chen J. Remarkably reducing carbon loss and H2 consumption on Ni−Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons. Journal of Energy Chemistry, 2020, 41: 194–208

    Article  Google Scholar 

  21. Pan Z, Wang R, Chen J. Deoxygenation of methyl laurate as a model compound on Ni−Zn alloy and intermetallic compound catalysts: geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental, 2018, 224: 88–100

    Article  CAS  Google Scholar 

  22. Kukushkin R G, Bulavchenko O A, Kaichev V V, Yakovlev V A. Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters. Applied Catalysis B: Environmental, 2015, 163: 531–538

    Article  CAS  Google Scholar 

  23. Xing S, Liu Y, Liu X, Li M, Fu J, Liu P, Lv P, Wang Z. Solvent-free hydrodeoxygenation of bio-lipids into renewable alkanes over NiW bimetallic catalyst under mild conditions. Applied Catalysis B: Environmental, 2020, 269: 118718

    Article  CAS  Google Scholar 

  24. Rodiansono R, Pratama M I, Astuti M D, Abdullah A, Nugroho A, Susi S. Selective hydrogenation of dodecanoic acid to dodecane-1-ol catalyzed by supported bimetallic Ni−Sn alloy. Bulletin of Chemical Reaction Engineering & Catalysis, 2018, 13(2): 311–319

    Article  CAS  Google Scholar 

  25. Onda A, Komatsu T, Yashima T. Characterization and catalytic properties of Ni-Sn intermetallic compounds in acetylene hydrogenation. Physical Chemistry Chemical Physics, 2000, 2(13): 2999–3005

    Article  CAS  Google Scholar 

  26. Yang Y, Chen L, Chen Y, Liu W, Feng H, Wang B, Zhang X, Wei M. The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chemistry, 2019, 21(19): 5352–5362

    Article  CAS  Google Scholar 

  27. Wang G, Wang H, Zhang H, Zhu Q, Li C, Shan H. Highly selective and stable NiSn/SiO2 catalyst for isobutane dehydrogenation: effects of Sn addition. ChemCatChem, 2016, 8(19): 3137–3145

    Article  CAS  Google Scholar 

  28. Reangchim P, Saelee T, Itthibenchapong V, Junkaew A, Chanlek N, Eiadua A, Kungwan N, Faungnawakij K. Role of Sn promoter in Ni/Al2O3 catalyst for the deoxygenation of stearic acid and coke formation: experimental and theoretical studies. Catalysis Science & Technology, 2019, 9(13): 3361–3372

    Article  CAS  Google Scholar 

  29. Ravenelle R M, Schüßler F, D’Amico A, Danilina N, van Bokhoven J A, Lercher J A, Jones C W, Sievers C. Stability of zeolites in hot liquid water. Journal of Physical Chemistry C, 2010, 114(46): 19582–19595

    Article  CAS  Google Scholar 

  30. Lange J P. Renewable feedstocks: the problem of catalyst deactivation and its mitigation. Angewandte Chemie International Edition, 2015, 54(45): 13186–13197

    Article  CAS  PubMed  Google Scholar 

  31. Dai Y Q, Lu P, Cao Z M, Campbell C T, Xia Y N. The physical chemistry and materials science behind sinter-resistant catalysts. Chemical Society Reviews, 2018, 47(12): 4314–4331

    Article  CAS  PubMed  Google Scholar 

  32. Gao C, Lyu F, Yin Y. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881

    Article  CAS  PubMed  Google Scholar 

  33. Li S, Cao R, Xu M, Deng Y, Lin L, Yao S, Liang X, Peng M, Gao Z, Ge Y, Liu J X, Li W X, Zhou W, Ma D. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction. National Science Review, 2022, 9(1): nwab026

    Article  CAS  PubMed  Google Scholar 

  34. Li S, Liu J, Yin Z, Ren P, Lin L, Gong Y, Yang C, Zheng X, Cao R, Yao S, Deng Y, Liu X, Gu L, Zhou W, Zhu J, Wen X, Xu B, Ma D. Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catalysis, 2020, 10(1): 907–913

    Article  CAS  Google Scholar 

  35. Lin L, Yao S, Gao R, Liang X, Yu Q, Deng Y, Liu J, Peng M, Jiang Z, Li S, Li Y W, Wen X D, Zhou W, Ma D. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nature Nanotechnology, 2019, 14(4): 354–361

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Zhang M, Deng Y, Xu M, Artiglia L, Wen W, Gao R, Chen B, Yao S, Zhang X, Peng M, Yan J, Li A, Jiang Z, Gao X, Cao S, Yang C, Kropf A J, Shi J, Xie J, Bi M, van Bokhoven J A, Li Y W, Wen X, Flytzani-Stephanopoulos M, Shi C, Zhou W, Ma D. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature, 2021, 589(7842): 396–401

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Materials, 2015, 14(8): 763–774

    Article  CAS  PubMed  Google Scholar 

  38. Choma J, Jamioła D, Augustynek K, Marszewski M, Jaroniec M. Carbon-gold core-shell structures: formation of shells consisting of gold nanoparticles. Chemical Communications (Cambridge), 2012, 48(33): 3972–3974

    Article  CAS  Google Scholar 

  39. Wei J, Wang G, Chen F, Bai M, Liang Y, Wang H, Zhao D, Zhao Y. Sol-gel synthesis of metal-phenolic coordination spheres and their derived carbon composites. Angewandte Chemie International Edition, 2018, 57(31): 9838–9843

    Article  CAS  PubMed  Google Scholar 

  40. Feng B, Feng Y, Qin J, Wang Z, Zhang Y, Du F, Zhao Y, Wei J. Self-template synthesis of spherical mesoporous tin dioxide from tin-polyphenol-formaldehyde polymers for conductometric ethanol gas sensing. Sensors and Actuators B: Chemical, 2021, 341: 129965

    Article  CAS  Google Scholar 

  41. Liu J, Qiao S Z, Liu H, Chen J, Orpe A, Zhao D Y, Lu G Q. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angewandte Chemie International Edition, 2011, 50(26): 5947–5951

    Article  CAS  PubMed  Google Scholar 

  42. Kortüm G, Vogel W, Andrussow K. Dissociation constants of organic acids in aqueous solution. Pure and Applied Chemistry, 1960, 1(2–3): 187–536

    Article  Google Scholar 

  43. Konp A, Pilato L. Phenolic Resins, Chemistry, Application and Performance. Berlin: Springer-Verlag Berlin Heidelberg, 1985: 24–58

    Google Scholar 

  44. Fraser D A, Hall R W, Raum A L J. Preparation of ‘high-ortho’ novolak resins I. Metal ion catalysis and orientation effect. Journal of Applied Chemistry, 1957, 7(12): 676–689

    Article  CAS  Google Scholar 

  45. Orlov Y F, Maslov E I, Belkina E I. Solubilities of metal hydroxides. Russian Journal of Inorganic Chemistry, 2013, 58(11): 1306–1314

    Article  CAS  Google Scholar 

  46. Maver U, Žnidaršič A, Saboti D, Srčič S, Gaberšček M, Godec A, Planinšek O. The relation between the interfacial contact and SiO2 coating efficiency and properties in the case of two clarithromycin polymorphs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371(1): 119–125

    Article  CAS  Google Scholar 

  47. Ōya A, Marsh H. Phenomena of catalytic graphitization. Journal of Materials Science, 1982, 17(2): 309–322

    Article  Google Scholar 

  48. Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880

    Article  CAS  PubMed  Google Scholar 

  49. Lyu Y, Wang P, Liu D, Zhang F, Senftle T P, Zhang G, Zhang Z, Wang J, Liu W. Tracing the active phase and dynamics for carbon nanofiber growth on nickel catalyst using environmental transmission electron microscopy. Small Methods, 2022, 6(6): 2200235

    Article  CAS  Google Scholar 

  50. Hegde R. Core level binding energy shifts in dilute tin alloys. Surface and Interface Analysis, 1982, 4(5): 204–207

    Article  CAS  Google Scholar 

  51. Tsujino Y, Wakai C, Matubayashi N, Nakahara M. Noncatalytic Cannizzaro-type reaction of formaldehyde in hot water. Chemistry Letters, 1999, 28(4): 287–288

    Article  Google Scholar 

  52. Deng J, Ren P J, Deng D H, Bao X H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 54(7): 2100–2104

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y, Wei J, Duyar M S, Ordomsky V V, Khodakov A Y, Liu J. Carbon-based catalysts for Fischer-Tropsch synthesis. Chemical Society Reviews, 2021, 50(4): 2337–2366

    Article  CAS  PubMed  Google Scholar 

  54. Dong C, Yu Q, Ye R P, Su P, Liu J, Wang G H. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: void-confinement effects in liquid-phase hydrogenations. Angewandte Chemie International Edition, 2020, 59(42): 18374–18379

    Article  CAS  PubMed  Google Scholar 

  55. Pang S F, Liu F F, Zhang Y J, Dong Z W, Su Q, Wang W F, Li Z H, Zhou F, Wang Y B. Construction of functional superhydrophobic biochars as hydrogen transfer catalysts for dehydrogenation of N-heterocycles. ACS Sustainable Chemistry & Engineering, 2021, 9(27): 9062–9077

    Article  CAS  Google Scholar 

  56. Yun Y S, Berdugo C E, Flaherty D W. Advances in understanding the selective hydrogenolysis of biomass derivatives. ACS Catalysis, 2021, 11(17): 11193–11232

    Article  CAS  Google Scholar 

  57. Peng B X, Yuan X G, Zhao C, Lercher J A. Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes. Journal of the American Chemical Society, 2012, 134(22): 9400–9405

    Article  CAS  PubMed  Google Scholar 

  58. Wang L, Niu X, Chen J. SiO2 supported Ni−In intermetallic compounds: efficient for selective hydrogenation of fatty acid methyl esters to fatty alcohols. Applied Catalysis B: Environmental, 2020, 278: 119293

    Article  CAS  Google Scholar 

  59. Chen L, Zhu Y, Zheng H, Zhang C, Li Y. Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru-Mo/ZrO2 catalysts. Applied Catalysis A: General, 2012, 411: 95–104

    Article  Google Scholar 

  60. Luo Z, Bing Q, Kong J, Liu J, Zhao C. Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols. Catalysis Science & Technology, 2018, 8(5): 1322–1332

    Article  CAS  Google Scholar 

  61. Ma B, Li C, Liu S, Lu Y. IR evidence for the formation of tilted CO on alumina-supported nickel catalyst. Chemical Physics Letters, 1992, 196(5): 433–436

    Article  CAS  Google Scholar 

  62. Kupila R, Lappalainen K, Hu T, Heponiemi A, Bergna D, Lassi U. Production of ethyl lactate by activated carbon-supported Sn and Zn oxide catalysts utilizing lignocellulosic side streams. Applied Catalysis A: General, 2021, 624: 118327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (Grant Nos. 21576193 and 21176177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixiang Chen.

Electronic Supplementary Material

11705_2022_2217_MOESM1_ESM.pdf

Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni−Sn intermetallic compounds with methanol as hydrogen donor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Gu, X., Shi, Y. et al. Efficient hydrothermal deoxygenation of methyl palmitate to diesel-like hydrocarbons on carbon encapsulated Ni−Sn intermetallic compounds with methanol as hydrogen donor. Front. Chem. Sci. Eng. 17, 139–155 (2023). https://doi.org/10.1007/s11705-022-2217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2217-4

Keywords

Navigation