Skip to main content
Log in

Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts

  • Researh Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A series of Ni/HZSM-5 and Ni/HIM-5 bi-functional catalysts were synthesized and applied to the aqueous-phase hydrodeoxygenation (HDO) of phenol. The Ni dispersibility and particle sizes were shown to be directly related to the porosity and crystal sizes of the parent zeolites, which further influenced the catalytic performances. The large pores and small crystal sizes of the parent zeolites were beneficial for dispersing Ni and forming small Ni particles, and the corresponding Ni/zeolite catalyst exhibited a higher phenol conversion and selectivity towards hydrocarbons. Importantly, the Ni/HIM-5 bi-functional catalyst exhibited a high activity (98.3%) and high selectivity for hydrocarbons (98.8%) when heated at 220°C for 1 h and is thus a new potential catalyst for the HDO of phenolics to form hydrocarbons in the aqueous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang X H, Zhang Q, Wang T J, Ma L L, Yu Y X, Chen L G. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts. Bioresource Technology, 2013, 134: 73–80

    Article  Google Scholar 

  2. Wang G H, Cao Z W, Gu D, Pfänder N, Swertz A C, Spliethoff B, Bongard H J, Weidenthaler C, Schmidt W, Rinaldi R, Schüth F. Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics. Angewandte Chemie International Edition, 2016, 55(31): 8850–8855

    Article  CAS  Google Scholar 

  3. Yu Z Q, Wang Y, Sun Z C, Li X, Wang A J, Camaioni D M, Lercher J A. Ni3P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chemistry, 2018, 20(3): 609–619

    Article  CAS  Google Scholar 

  4. Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition, 2007, 46(38): 7164–7183

    Article  CAS  Google Scholar 

  5. Mei Q Q, Shen X J, Liu H Z, Han B X. Selectively transform lignin into value-added chemicals. Chinese Chemical Letters, 2019, 30(1): 15–24

    Article  CAS  Google Scholar 

  6. Song W J, He Y Y, Lai S T, Lai W K, Yi X D, Yang W M, Jiang X M. Selective hydrodeoxygenation of lignin phenols to alcohols in aqueous phase over hierarchical Nb2O5-supported Ni Catalyst. Green Chemistry, 2020, 22(5): 1662–1670

    Article  CAS  Google Scholar 

  7. Mortensen P M, Grunwaldt J D, Jensen P A, Jensen A D. Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil. ACS Catalysis, 2013, 3(8): 1774–1785

    Article  CAS  Google Scholar 

  8. Gutierrez A, Kaila R K, Honkela M L, Slioor R, Krause A O I. Hydrodeoxygenation of guaiacol on noble metal catalysts. Catalysis Today, 2009, 147(3–4): 239–246

    Article  CAS  Google Scholar 

  9. Furimsky E. Catalytic hydrodeoxygenation. Applied Catalysis A, General, 2000, 199(2): 147–190

    Article  CAS  Google Scholar 

  10. Zhang X H, Tang W W, Zhang Q, Wang T J, Ma L L. Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. Applied Energy, 2018, 227: 73–79

    Article  CAS  Google Scholar 

  11. Yung M M, Foo G S, Sievers C. Role of Pt during hydrodeoxygenation of biomass pyrolysis vapors over Pt/HBEA. Catalysis Today, 2018, 302: 151–160

    Article  CAS  Google Scholar 

  12. He Z, Wang X Q. Highly selective catalytic hydrodeoxygenation of guaiacol to cyclohexane over Pt/TiO2 and NiMo/Al2O3 catalysts. Frontiers of Chemical Science and Engineering, 2014, 8(3): 369–377

    Article  CAS  Google Scholar 

  13. He S B, Boom J, van der Gaast R, Seshan K. Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts. Frontiers of Chemical Science and Engineering, 2018, 12(1): 155–161

    Article  CAS  Google Scholar 

  14. Mao L Y, Li Y X, Zhang Z C. Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs. Frontiers of Chemical Science and Engineering, 2018, 12(1): 50–58

    Article  CAS  Google Scholar 

  15. Shao Y, Xia Q E, Dong L, Liu X H, Han X, Parker S F, Cheng Y Q, Daemen L L, Ramirez-Cuesta A J, Yang S H, Wang Y. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nature Communications, 2017, 8(201): 1–9

    CAS  Google Scholar 

  16. Yoosuk B, Tumnantong D, Prasassarakich P. Unsupported MoS2 and CoMoS2 catalysts for hydrodeoxygenation of phenol. Chemical Engineering Science, 2012, 79: 1–7

    Article  CAS  Google Scholar 

  17. Song W J, Zhou S J, Hu S H, Lai W K, Lian Y X, Wang J Q, Yang W M, Wang M Y, Wang P, Jiang X M. Surface engineering of CoMoS nanosulfide for hydrodeoxygenation of lignin-derived phenols to arenes. ACS Catalysis, 2019, 9(1): 259–268

    Article  CAS  Google Scholar 

  18. Liu G L, Robertson A W, Li M M J, Kuo W C H, Darby M T, Muhieddine M H, Lin Y C, Suenaga K, Stamatakis M, Warner J H, Tsang S C E. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxyganetion reaction. Nature Chemistry, 2017, 9(8): 1–7

    Article  Google Scholar 

  19. Zhao C, Kou Y, Lemonidou A A, Li X B, Lercher J A. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angewandte Chemie International Edition, 2009, 48(22): 3987–3990

    Article  CAS  Google Scholar 

  20. Zhao C, He J Y, Lemonidou A A, Li X B, Lercher J A. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 2011, 280(1): 8–16

    Article  CAS  Google Scholar 

  21. Zhao C, Lercher J A. Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts. ChemCatChem, 2011, 4(1): 64–68

    Article  Google Scholar 

  22. Zhao C, Kasakov S, He J Y, Lercher J A. Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation. Journal of Catalysis, 2012, 296: 12–23

    Article  CAS  Google Scholar 

  23. Robinson A M, Hensley J E, Medlin J W. Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review. ACS Catalysis, 2016, 6(8): 5026–5043

    Article  CAS  Google Scholar 

  24. He J Y, Zhao C, Lercher J A. Impact of solvent for individual steps of phenol hydrodeoxygenation with Pd/C and HZSM-5 as catalysts. Journal of Catalysis, 2014, 309: 362–375

    Article  CAS  Google Scholar 

  25. Song W J, Liu Y S, Baráth E, Zhao C, Lercher J A. Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols. Green Chemistry, 2015, 17(2): 1204–1218

    Article  CAS  Google Scholar 

  26. Zhao C, Yu Y Z, Jentys A, Lercher J A. Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxy-genation. Applied Catalysis B: Environmental, 2013, 132: 282–292

    Article  Google Scholar 

  27. Pichler C M, Gu D, Joshi H, Schuth F. Influence of preparation method and doping of zirconium oxide onto the material characteristics and catalytic activity for the HDO reaction in nickel on zirconium oxide catalysts. Journal of Catalysis, 2018, 365: 367–375

    Article  CAS  Google Scholar 

  28. Yang F F, Liu D, Zhao Y T, Wang H, Han J Y, Ge Q F, Zhu X L. Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts. ACS Catalysis, 2018, 8(3): 1672–1682

    Article  CAS  Google Scholar 

  29. Shi Y C, Xing E H, Cao Y Y, Liu M J, Wu K J, Yang M D, Wu Y L. Tailoring product distribution during upgrading of palmitic acid over bi-functional metal/zeolite catalysts. Chemical Engineering Science, 2017, 166: 262–273

    Article  CAS  Google Scholar 

  30. Cao Y Y, Shi Y C, Liang J M, Wu Y L, Huang S B, Wang J L, Yang M D, Hu H S. High iso-alkanes production from palmitic acid over bi-functional Ni/H-ZSM-22 catalysts. Chemical Engineering Science, 2017, 158: 188–195

    Article  CAS  Google Scholar 

  31. Sankaranarayanan T M, Berenguer A, Ochoa-Hernandez C, Moreno I, Jana P, Coronado J M, Serrano D P, Pizarro P. Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: Effect of metal and support properties. Catalysis Today, 2015, 243: 163–172

    Article  CAS  Google Scholar 

  32. Shi Y C, Xing E H, Zhang J M, Xie Y B, Zhao H, Sheng Y X, Cao H B. Temperature-dependent selectivity of hydrogenation/hydrogenolysis during phenol conversion over Ni catalysts. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9464–9473

    Article  CAS  Google Scholar 

  33. Jo S K. Weakly-bound hydrogen on defected Pt (111). Surface Science, 2015, 635: 99–107

    Article  CAS  Google Scholar 

  34. de Souza P M, Rabelo-Neto R C, Borges L E P, Jacobs G, Davis B H, Resasco D E, Noronha F B. Hydrodeoxygenation of phenol over Pd catalysts effect of support on reaction mechanism and catalyst deactivation. ACS Catalysis, 2017, 7(3): 2058–2073

    Article  CAS  Google Scholar 

  35. de Souza P M, Rabelo-Neto R C, Borges L E P, Jacobs G, Davis B H, Sooknoi T, Resasco D E, Noronha F B. Role of keto intermediates in the hydrodeoxygenation of phenol over Pd on oxophilic supports. ACS Catalysis, 2015, 5(2): 1318–1329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21908225), the National Key Research and Development Program of China (Grant No. 2016YFB0600505) and Youth Innovation Promotion Association, CAS (2014037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Tian, F., Chen, J. et al. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts. Front. Chem. Sci. Eng. 15, 288–298 (2021). https://doi.org/10.1007/s11705-020-1932-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1932-y

Keywords

Navigation