Skip to main content
Log in

Glucose-derived carbon-coated Ni–In intermetallic compounds for in situ aqueous phase selective hydrogenation of methyl palmitate to hexadecanol

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The carbon-coated Ni (Ni@C) and Ni–In intermetallic compounds (IMCs) (Ni–In@C) catalysts were synthesized via combining one-pot hydrothermal method with glucose as carbon source and the carbonization under N2 atmosphere. Their reactivities were compared in in situ aqueous phase selective hydrogenation of methyl palmitate to hexadecanol using methanol as a H2 donor. The Ni@C catalyst dominatingly catalyzes decarbonylation/decarboxylation, accompanying with the serious C–C bond hydrogenolysis and methanation. In contrast, hexadecanol is mainly generated on Ni–In@C, where C–C bond hydrogenolysis and methanation are remarkably inhibited. This is ascribed to the geometric and electronic property of Ni–In IMCs. The hexadecanol yield reaches 84.0% under an optimal condition on Ni–In@C. The structure of NiIn IMC is hydrothermally stable even at 330 °C, and the Ni–In IMCs particles highly resist to sintering and leaching under harsh hydrothermal condition due to the confinement of carbon. Catalyst deactivation is mainly due to the carbonaceous deposition, and the catalyst reactivity is mostly recovered by the regeneration with CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He L, Cheng H, Liang G, Yu Y, Zhao F (2013) Effect of structure of CuO/ZnO/Al2O3 composites on catalytic performance for hydrogenation of fatty acid ester. Appl Catal A 452:88–93

    Article  CAS  Google Scholar 

  2. Zhang Z, Zhou F, Chen K, Fu J, Lu X, Ouyang P (2017) Catalytic in situ hydrogenation of fatty acids into fatty alcohols over Cu-based catalysts with methanol in hydrothermal media. Energy Fuels 31:12624–12632

    Article  CAS  Google Scholar 

  3. Liu X, Yang M, Deng Z, Dasgupta A, Guo Y (2021) Hydrothermal hydrodeoxygenation of palmitic acid over Pt/C catalyst: mechanism and kinetic modeling. Chem Eng J 407:126332

    Article  CAS  Google Scholar 

  4. Wang J, Xu L, Nie R, Lyu X, Lu X (2020) Bifunctional CuNi/CoOx catalyst for mild-temperature in situ hydrodeoxygenation of fatty acids to alkanes using isopropanol as hydrogen source. Fuel 265:116913

    Article  CAS  Google Scholar 

  5. Gilkey MJ, Xu B (2016) Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal 6:1420–1436

    Article  CAS  Google Scholar 

  6. Gou X, Okejiri F, Zhang Z, Liu M, Liu J, Chen H, Chen K, Lu X, Ouyang P, Fu J (2020) Tannin-derived bimetallic CuCo/C catalysts for an efficient in-situ hydrogenation of lauric acid in methanol-water media. Fuel Process Technol 205:106426

    Article  CAS  Google Scholar 

  7. Xiong H, Pham HN, Datye AK (2014) Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chem 16:4627–4643

    Article  CAS  Google Scholar 

  8. Wu C, Chen X, Tang L, Wei Q, Wei X, Liang J, Wang L (2021) Rationally constructing a nano MOF-derived Ni and CQD embedded N-doped carbon nanosphere for the hydrogenation of petroleum resin at low temperature. ACS Appl Mater Interfaces 13:10855–10869

    Article  CAS  Google Scholar 

  9. Liu Y, Yang X, Liu H, Ye Y, Wei Z (2017) Nitrogen-doped mesoporous carbon supported Pt nanoparticles as a highly efficient catalyst for decarboxylation of saturated and unsaturated fatty acids to alkanes. Appl Catal B 218:679–689

    Article  CAS  Google Scholar 

  10. Shi J, Zhao M, Wang Y, Fu J, Lu X, Hou Z (2016) Upgrading of aromatic compounds in bio-oil over ultrathin graphene encapsulated Ru nanoparticles. J Mater Chem A 4:5842–5848

    Article  CAS  Google Scholar 

  11. Shi Y, Ai L, Shi H, Gu X, Han Y, Chen J (2021) Carbon-coated Ni-Co alloy catalysts: preparation and performance for in-situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons using methanol as the hydrogen donor. Front Chem Sci Eng 16:443

    Article  Google Scholar 

  12. Pham HN, Anderson AE, Johnson RL, Schwartz TJ, O’Neill BJ, Duan P, Schmidt-Rohr K, Dumesic JA, Datye AK (2015) Carbon overcoating of supported metal catalysts for improved hydrothermal stability. ACS Catal 5:4546–4555

    Article  CAS  Google Scholar 

  13. Qian L, Lan G, Liu X, Li Z, Li Y (2021) Aqueous-phase hydrogenation of levulinic acid over carbon layer protected silica-supported cobalt-ruthenium catalysts. Chin J Chem Eng 38:114–122

    Article  Google Scholar 

  14. Huang Q, Yu W, Lu F, Lu R, Si X, Gao J, Xu J (2019) Fabrication of highly dispersed Ru nanoparticles stabilized in coated carbon shell via one-pot co-synthesis strategy for aqueous hydrogenation of bio-based itaconic acid. Catal Today 319:197–205

    Article  CAS  Google Scholar 

  15. Yang H, Nie R, Xia W, Yu X, Jin D, Lu X, Zhou D, Xia Q (2017) Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid. Green Chem 19:5714–5722

    Article  CAS  Google Scholar 

  16. Wang Z, Zou Y, Li Y, Cheng Y (2020) Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small 16:1907042

    Article  CAS  Google Scholar 

  17. Wei J, Wang G, Chen F, Bai M, Liang Y, Wang H, Zhao D, Zhao Y (2018) Sol-Gel synthesis of metal-phenolic coordination spheres and their derived carbon composites. Angew Chem Int Ed 57:9838–9843

    Article  CAS  Google Scholar 

  18. Yuan M, Long Y, Yang J, Hu X, Xu D, Zhu Y, Dong Z (2018) Biomass sucrose-derived Cobalt@Nitrogen-Doped carbon for catalytic transfer hydrogenation of nitroarenes with formic acid. Chemsuschem 11:4156–4165

    Article  CAS  Google Scholar 

  19. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Article  Google Scholar 

  20. Matsagar BM, Yang R, Dutta S, Ok YS, Wu KCW (2021) Recent progress in the development of biomass-derived nitrogen-doped porous carbon. J Mater Chem A 9:3703–3728

    Article  CAS  Google Scholar 

  21. Liu L, Gao F, Concepción P, Corma A (2017) A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. J Catal 350:218–225

    Article  CAS  Google Scholar 

  22. Zhang M, Sha J, Miao X, Liu E, Shi C, Li J, He C, Li Q, Zhao N (2017) Three-dimensional graphene anchored Fe2O3@C core-shell nanoparticles as supercapacitor electrodes. J Alloys Compd 696:956–963

    Article  CAS  Google Scholar 

  23. Wang L, Niu X, Chen J (2020) SiO2 supported Ni–In intermetallic compounds: efficient for selective hydrogenation of fatty acid methyl esters to fatty alcohols. Appl Catal B 278:119293

    Article  CAS  Google Scholar 

  24. Ryu J, Suh YW, Suh DJ, Ahn DJ (2010) Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 48:1990–1998

    Article  CAS  Google Scholar 

  25. Hwang S, Lee S, Yu J (2007) Template-directed synthesis of highly ordered nanoporous graphitic carbon nitride through polymerization of cyanamide. Appl Surf Sci 253:5656–5659

    Article  CAS  Google Scholar 

  26. Zhao Z, Dai Y, Ge G, Wang G (2015) Efficient tuning of microstructure and surface chemistry of nanocarbon catalysts for ethylbenzene direct dehydrogenation. AIChE J 61:2543–2561

    Article  CAS  Google Scholar 

  27. Bernard TA, Kabyemela M, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38:8

    Article  Google Scholar 

  28. Sun J, Yang Y, Wang J, Lu B, Guo J (2021) Ammonia assisted regulation of nitrogen-type in carbonaceous support applied for oxygen reduction reaction. Appl Surf Sci 558:149958

    Article  CAS  Google Scholar 

  29. Wang J, Wei Z, Gong Y, Wang S, Su D, Han C, Li H, Wang Y (2015) Ni-promoted synthesis of graphitic carbon nanotubes from in situ produced graphitic carbon for dehydrogenation of ethylbenzene. Chem Commun 51:12859–12862

    Article  CAS  Google Scholar 

  30. Yuan H, Yan F, Li C, Zhu C, Zhang X, Chen Y (2018) Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material. ACS Appl Mater Interfaces 10:1399–1407

    Article  CAS  Google Scholar 

  31. He L, Wang Y, Gao H, Liu Z, Xie Z (2021) Nitrogen doped carbon for Pd-catalyzed hydropurification of crude terephthalic acid: roles of nitrogen species. RSC Adv 11:33646–33652

    Article  CAS  Google Scholar 

  32. Hollinger G, Skheyta-Kabbani R, Gendry M (1994) Oxides on GaAs and InAs surfaces: an x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers. Phys Rev B 49:11159–11167

    Article  CAS  Google Scholar 

  33. Ai L, Shi Y, Han Y, Chen J (2021) In situ aqueous phase hydrodeoxygenation of methyl palmitate to hydrocarbons on Ni catalyst derived from the reduction of LaNiO3 perovskite. Reac Kinet Mech Cat 133:209–227

    Article  CAS  Google Scholar 

  34. Yu X, Chen J, Ren T (2014) Promotional effect of Fe on performance of Ni/SiO2 for deoxygenation of methyl laurate as a model compound to hydrocarbons. RSC Adv 4:46427–46436

    Article  CAS  Google Scholar 

  35. Mondal S, Singuru R, Chandra Shit S, Hayashi T, Irle S, Hijikata Y, Mondal J, Bhaumik A (2017) Ruthenium nanoparticle-decorated porous organic network for direct hydrodeoxygenation of long-chain fatty acids to alkanes. ACS Sustain Chem Eng 6:1610–1619

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (No. 21576193 and 21176177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixiang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7600 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Shi, H., Wang, D. et al. Glucose-derived carbon-coated Ni–In intermetallic compounds for in situ aqueous phase selective hydrogenation of methyl palmitate to hexadecanol. Reac Kinet Mech Cat 135, 1621–1634 (2022). https://doi.org/10.1007/s11144-022-02221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02221-x

Keywords

Navigation