Skip to main content
Log in

Implementation of mature tea leaves extract in bioinspired synthesis of iron oxide nanoparticles: preparation, process optimization, characterization, and assessment of therapeutic potential

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In recent years, the investigation of quick, efficient, and green method of metal nanoparticles synthesis has gained considerable importance in various dimensions of nanotechnology. But there are certain limitations to this emerging interest assize, morphology, and bioactivity of nanoparticles produced through green synthesis often varies greatly corresponding to the specific condition of metallic precursor and reducing agent. Current study intends to explore optimum condition like concentration of metallic precursor, plant extract (PLX), their volumetric ratio during biogenic synthesis of iron oxide nanoparticles (FeNPs) using aqueous extracts of mature tea leaves which is basically a waste product with no commercial importance and generally discarded after pruning of young leaves and buds. The study also deals with the characterization of nanoparticles synthesized at optimized condition, investigation of antimicrobial and antioxidant propensity of the same. The optimal reactant concentration for biosynthesis of FeNPs was claimed to be10 mM FeCl3, 100 mg/mL plant extract and volumetric ratio of FeCl3:PLX = 10:1. The FeNPs obtained through this route had a spherical to irregular morphology with crystalline nature, average TEM and hydrodynamic size of 13.09 and 75.25 nm, respectively, having a zeta potential value of + 46.2 mV indicating strong stability. Synthesized FeNPs was found to be effective against wide range of soil microbes with highest activity against gram-negative bacteria (Escherichia coli) than gram-positive bacteria. Biosynthesized nanoparticles showed dose dependent antioxidant activity against all the tested parameters with highest against DPPH and least active against nitric oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. In addition, the related datasets are available from the corresponding author on reasonable request.

Abbreviations

FeNPs:

Iron oxide nanoparticles

PLX:

Plant extracts

mM:

Millimolar

mV:

Millivolt

PDI:

Polydispersity index

nm:

Nanometer

Min:

Minute

g:

Gram

L:

Liter

FEG-SEM:

Field emission gun scanning electron microscopy

EDX:

Energy-dispersive X-ray spectroscopy

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction analysis

FTIR:

Fourier transformed infrared spectroscopy

DLS:

Dynamic light scattering

DPPH:

2,2 Diphenyl-1-picrylhydrazyl

ABTS:

2, 2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)

MIC:

Minimum inhibitory concentration

µL:

Microliter

mL:

Milliliter

mg:

Milligram

CFU:

Colony forming unit

References

  • Abdullah JAA, Eddine LS, Abderrhmane B, Alonso-Gonzalez M, Guerrero A, Romero A (2020) Green synthesis and characterization of iron oxide nanoparticles by Pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustain Chem Pharm. https://doi.org/10.1016/j.scp.2020.100280

    Article  Google Scholar 

  • Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983

    CAS  Google Scholar 

  • Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B 81:81–86

    CAS  Google Scholar 

  • Ajayi E, Afolayan A (2017) Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citrates Stapf. Adv Nat Sci Nanosci. https://doi.org/10.1088/2043-6254/aa5cf7

    Article  Google Scholar 

  • Aliahmad M, Moghaddam NN (2013) Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater Sci Poland 31(2):264–268. https://doi.org/10.2478/s13536-012-0100-6

    Article  CAS  Google Scholar 

  • Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Khan MS, Ansari FA, Alam MZ, Ahmed MA, Khan MS, Baig MH, Khan JM, Shahzad SA, Arshad M, Alyousef A, Ahmad I (2018) Low Temperature Synthesis of Superparamagnetic Iron Oxide (Fe3O4) Nanoparticles and Their ROS Mediated Inhibition of Biofilm Formed by Food-Associated Bacteria. Front Microbiol 9:2567. https://doi.org/10.3389/fmicb.2018.02567

    Article  PubMed  PubMed Central  Google Scholar 

  • Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813. https://doi.org/10.1038/srep14813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT et al (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735

    CAS  PubMed  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003–6009

    CAS  Google Scholar 

  • Badmapriya D, Asharani IV (2016) Dye degradation studies catalysed by green synthesized iron oxide nanoparticles. Int J ChemTech Res 9:409–416

    CAS  Google Scholar 

  • Bansal V, Li V, O’Mullane AP, Bhargava SK (2010) Shape dependent electrocatalytic behaviour of silver nanoparticles. Cryst Eng- Comm 12(12):4280–4286

    CAS  Google Scholar 

  • Belaïd S, Stanicki D, Vander-Elst L, Muller RN, Laurent S (2018) Influence of experimental parameters on iron oxide nanoparticle properties synthesized by thermal decomposition Size and nuclear magnetic resonance studies. Nanotechnology 29:165603

    PubMed  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic Light Scattering: With Applications to Chemistry, Biology and Physics. Dover Publications, New York

    Google Scholar 

  • Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M (2016) Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci 6:755–766. https://doi.org/10.1007/s13204-015-0473-z

    Article  CAS  Google Scholar 

  • Bharde A, Wani A, Shouche Y, Joy PA, Prasad BLV, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327

    CAS  PubMed  Google Scholar 

  • Bhushan M, Kumar Y, PeriyasamyL VAK (2018) Antibacterial applications of α-Fe2O3/Co3O4 nanocomposites and study of their structural, optical, magnetic and cytotoxic characteristics. Appl Nanosci 8:137–153. https://doi.org/10.1007/s13204-018-0656-5

    Article  CAS  Google Scholar 

  • Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions. Sci World J. https://doi.org/10.1155/2013/796018

    Article  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  • Burns A, Self WT (2018) Antioxidant Inorganic Nanoparticles and Their Potential Applications in Biomedicine. Smart Nanoparticles Biomed. https://doi.org/10.1016/B978-0-12-814156-4.00011-2

    Article  Google Scholar 

  • Carneiro MLB, Nunes ES, Peixoto RCA (2011) Free Rhodium (II) citrate and rhodium (II) citrate magnetic carriers as potential strategies for breast cancer therapy. J Nanobiotechnol. https://doi.org/10.1186/1477-3155-9-11

    Article  Google Scholar 

  • Cho YS, Oh JJ, Oh KH (2010) Antimicrobial activity and biofilm formation inhibition of green tea polyphenols on human teeth. Biotechnol Bioprocess Eng 15(2):359–364

    CAS  Google Scholar 

  • Corot C, Petry KG, Trivedi R, Saleh A, Jonkmanns C, Le-Bas JF, Blezer E, Rausch M, Brochet B, Foster-Gareau P, Baleriaux D, Gaillard S, Dousset V (2004) Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 39:619–625

    CAS  PubMed  Google Scholar 

  • Cosme P, Rodríguez AB, Espino J, Garrido M (2020) Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants. https://doi.org/10.3390/antiox9121263

    Article  PubMed  PubMed Central  Google Scholar 

  • Da’na E, Taha A, Afkar E, (2018) Green synthesis of iron nanoparticles by Acacia nilotica pods extract and its catalytic, adsorption, and antibacterial activities. Appl Sci 8:1922. https://doi.org/10.3390/app8101922

    Article  CAS  Google Scholar 

  • Das D, Ghosh R, Mandal P (2019) Biogenic synthesis of silver nanoparticles using S1 genotype of Morus albaleaf extract: characterization, antimicrobial and antioxidant potential assessment. SN Appl Sci 1:498. https://doi.org/10.1007/s42452-019-0527-z

    Article  CAS  Google Scholar 

  • Das D, Haydar MS, Mandal P (2020) Impact of physical attributes on proficient phytosynthesis of silver nanoparticles using extract of fresh mulberry leaves characterization, stability and bioactivity assessment. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01794-1

    Article  Google Scholar 

  • Desalegn B, Megharaj M, Zuliang-Chen Z, Naidu R (2019) Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01750

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh AR, Gupta A, Kim BS (2019) Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities. Biomed Res Int. https://doi.org/10.1155/2019/1714358

    Article  PubMed  PubMed Central  Google Scholar 

  • Dijaz SM, Lotfpour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284

    Google Scholar 

  • Dinis TCP, Madeira VM, Almeida LM (1994) Action of phenolic derivates (acetaminophen, salicylate and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315(1):161–169

    CAS  PubMed  Google Scholar 

  • Dona M, Dell’Aica I, Calabrese F, Benelli R, Morini M, Albini A, GarbisaS, (2003) Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol 170:4335–4341

    CAS  PubMed  Google Scholar 

  • Ebrahiminezhad A, Taghizadeh S, Berenjian A, Naeini FA, Ghasemi Y (2016) Green synthesis of silver nanoparticles capped with natural carbohydrates using Ephedra intermedia. Nanosci Nanotechnol-Asia 6:1–9

    CAS  Google Scholar 

  • Ebrahiminezhad A, Taghizadeh S, Berenjiand A, Rahi A, Ghasemi Y (2016) Synthesis and characterization of silver nanoparticles with natural carbohydrate capping using Zataria multiflora. Adv Mater Lett 7(6):122–127

    Google Scholar 

  • Ebrahiminezhad A, Zare-Hoseinabadi A, Berenjian A, Ghasemi Y (2017) Green synthesis and characterization ofzero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process Synth 6(5):469–475. https://doi.org/10.1515/gps-2016-0133

    Article  CAS  Google Scholar 

  • Ehrampoush MH, Miria M, Salmani MH, Mahvi AH (2015) Cadmium removal from aqueous solution by greensynthesis iron oxide nanoparticles with tangerine peel extract. J Environmen Health Sci Eng. https://doi.org/10.1186/s40201-015-0237-4

    Article  Google Scholar 

  • Elmastas M, Gulcin I, Beydemir OI, Kufrevioglu OI, Aboul-Enein HY (2006) A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) fruit extracts. Anal Lett 39:47–65

    CAS  Google Scholar 

  • El-Refai AA, Ghoniem GA, ElKhateeb AY, Hassaan MM (2018) Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. J Nanostructure Chem 8:71–81. https://doi.org/10.1007/s40097-018-0255-8

    Article  CAS  Google Scholar 

  • Eslami S, Ebrahimzadeh MA, Biparva P (2018) Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Adv 8:26144–26155. https://doi.org/10.1039/C8RA04451A

    Article  CAS  Google Scholar 

  • Fazlzadeh M, Rahmani K, Zarei A, Abdoallahzadeh H, Nasiri F, Khosravi R (2017) A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv Powder Technol 28:122–130

    CAS  Google Scholar 

  • FengY HuT, Wu M, Shangguan J, Fan H, Mi J (2016) Effect of microwave irradiation on the preparation of iron oxide/arenaceous clay sorbent for hot coal gas desulfurization. Fuel Process Technol 148:35–42. https://doi.org/10.1016/j.fuproc.2016.01.037

    Article  CAS  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: Opportunities and challenges. Nat Rev Cancer 5:161–171

    CAS  PubMed  Google Scholar 

  • Fu Z, Chen J, Cai Y, Lei Y, Chen L, Pei L, Zhou D, Liang X, Ruan Z (2010) Antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch EtSav) Ching. J Ethnopharmacol 130:521–528

    PubMed  Google Scholar 

  • Gabrielyan L, Hovhannisyan A, Gevorgyan V, Ananyan M, Trchounian A (2019) Antibacterial effects of iron oxide (Fe3O4) nanoparticles: Distinguishing concentration-dependent effects with different bacterial cells growth and membrane-associated mechanisms. Appl Microbiol Biotechnol 103:2773–2782

    CAS  PubMed  Google Scholar 

  • Gouda AR, Sidkey NM, Shawky HA, Abdel-hady YA (2020) biosynthesis, characterization and antimicrobial activity of iron oxide nanoparticles synthesized by fungi. Az J Pharm Sci. https://doi.org/10.21608/AJPS.2020.118382

    Article  Google Scholar 

  • Gour A, Jain NK (2019) Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2019.1577878

    Article  PubMed  Google Scholar 

  • Gruskiene R, Krivorotova T, Staneviciene R, Ratautas D, Serviene E, Sereikaite J (2018) Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin. Colloid Surf B 169:126–134. https://doi.org/10.1016/j.colsurfb.2018.05.017

    Article  CAS  Google Scholar 

  • Haider MJ, Mehdi MS (2014) Study of morphology and zeta potential analyzer for the silver nanoparticles. Int J Sci Eng Res 5(7):381–385

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    CAS  PubMed  Google Scholar 

  • Hanani EA (2005) Identification of antioxidant compounds in sponges Callyspongia sp. from thousand islands. Pharm Sci 2:127–133

    Google Scholar 

  • Hedberg J, Lundin M, Lowe T, Blomberg E, Wold S, Wallinder LO (2012) Interactions between surfactants and silver nanoparticles of varying charge. J Colloid Interface Sci 369:193–201

    CAS  PubMed  Google Scholar 

  • Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Material Chem 19:8671–8677

    CAS  Google Scholar 

  • Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron-based nanoparticles using oolong teaextract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 117:801–804. https://doi.org/10.1016/j.saa.2013.09.054

    Article  CAS  PubMed  Google Scholar 

  • Iso H, Date Z, Wakai K, Fukui M, Tamakoshi A (2006) The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 144:554–562

    PubMed  Google Scholar 

  • Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crops Prod 46:132–137

    CAS  Google Scholar 

  • Jović Orsini N, Babić-Stojić B, Spasojević V, Calatayud MP, Cvjetićanin N, Goya GF (2018) Magnetic and power absorption measurements on iron oxide nanoparticles synthesized by thermal decomposition of Fe(acac)3. J Magn Magn Mater 449:286–296. https://doi.org/10.1016/j.jmmm.2017.10.053

  • Kanagasubbulakshmi S, Kadirvelu K (2017) Green synthesis of iron oxide nanoparticles using lagenaria siceraria and evaluation of its antimicrobial activity. Def Life Sci J 2(4):422–427. https://doi.org/10.14429/dlsj.2.12277

    Article  Google Scholar 

  • Karkuzhali YA (2015) Biosynthesis of iron oxide nanoparticles using aquous extract of jatropha gosspifolia as source of reducing agent. Int J Nanosci Nanotechnol 6(1):47–55

    Google Scholar 

  • Kaul RK, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, Tarafdar JC (2012) Magnesium and iron nanoparticles production using microorganisms and various salts. Mater Sci Poland 30:254–258

    CAS  Google Scholar 

  • Kavitha KS, Baker S, Rakshith D, Kavitha HU, Rao HCY, Harini BP, Satish S (2013) Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci 2:66–76

    Google Scholar 

  • Kaya H, Aydin F, Gürkan M, Yilmaz S, Ates M, Demir V, Arslan Z (2016) A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere 144:571–582. https://doi.org/10.1016/j.chemosphere.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  • Khalil AM, Rabie ST (2016) Antimicrobial behavior and photostability of polyvinyl chloride/1-vinylimidazole nanocomposites loaded with silver or copper nanoparticles. J Vinyl Addit Technol. Doi https://doi.org/10.1002/vnl.21588

  • Khalil AM, Rabie ST (2021) Mechanical, thermal and antibacterial performances of acrylonitrile butadiene rubber/polyvinyl chloride loaded with Moringa oleifera leaves powder. J Therm Anal Calorim 143:2973–2981. https://doi.org/10.1007/s10973-019-09194-5

    Article  CAS  Google Scholar 

  • Khalil AM, Abdel-Monem RA, Rabie ST (2020) Promising features for poly(vinyl chloride) enriched with Moringa oleifera: Photostability, rheo-mechanical, thermal and antibacterial properties. J Vinyl Addit Technol. https://doi.org/10.1002/vnl.21780

    Article  Google Scholar 

  • Khalili M, Ebrahimzadeh MA, Kosaryan M (2015) In Vivo Iron-Chelating Activity and Phenolic Profiles of the Angel’s Wings Mushroom, Pleurotus porrigens (Higher Basidiomycetes). Int J Med Mushrooms 17(9):847–856

    PubMed  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 30(5):797–810

    Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnol 14:95. https://doi.org/10.1088/0957-4484/14/1/321

    Article  CAS  Google Scholar 

  • Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 15(410):67–73. https://doi.org/10.1016/j.jcis.2013.08.020

    Article  CAS  Google Scholar 

  • Kudr J, HaddadY Richtera L, Heger Z, Cernak M, Adam V, Zitka O (2017) Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomater. https://doi.org/10.3390/nano7090243

    Article  Google Scholar 

  • Kumar KM, Mandal BK, Kumar KS, Reddy PS, Sreedhar B (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim ActaA Mol Biomol Spectrosc 102:128–33

    Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2014) Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. J Saudi Chem Soc 18:364–369. https://doi.org/10.1016/j.jscs.2014.01.003

    Article  CAS  Google Scholar 

  • Kumari A, Singla R, Guliani A, Walia S, Acharya A, Yadav SK (2016a) Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration. Springer, Singapore, pp 1–19

    Google Scholar 

  • Kumari RM, Thapa N, Gupta N, Kumar A, Nimesh S (2016b) Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6262/7/4/045009

    Article  Google Scholar 

  • Lassoued A, Dkhil B, Gadri A, Ammar A (2017) Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys 7:3007–3015. https://doi.org/10.1016/j.rinp.2017.07.066

    Article  Google Scholar 

  • Li XC, Wu XT, Huang L (2009) Correlation between antioxidant activities and phenolic contents of radix Angelicae sinensis (Danggui). Molecules 14:5349–5361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wei W, Wu X, Zhao Y, Dai H (2020) The antibacterial and antibiofilm activities of mesoporous hollow Fe3O4 nanoparticles in an alternating magnetic field. Biomater Sci 8:4492–4507

    CAS  PubMed  Google Scholar 

  • Lin L, Wang W, Huang J, Li Q, Sun D, Yang X, Wang H, Heb N, Wang Y (2010) Nature factory of silver nanowires: Plant-mediated synthesis using broth of Cassia fistula leaf. Chem Eng J. https://doi.org/10.1016/j.cej.2010.06.023

    Article  Google Scholar 

  • López RG, Pineda MG, Hurtado G, De-León RD, Fernández S, Saade H, Bueno D (2013) Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. Int J MolSci 14:19636–19650. https://doi.org/10.3390/ijms141019636

    Article  CAS  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, MohamadR, (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964

    PubMed  PubMed Central  Google Scholar 

  • Marcocci L, Packer L, Droy-Lefaix MT, Sekaki A, Grades-Albert M (1994) Antioxidant action of Ginkgo biloba extracts EGb 761. Methods Enzymol 234:462–475

    CAS  PubMed  Google Scholar 

  • Mauricio MD, Guerra-Ojeda S, Marchio P, Valles SL, Aldasoro M, Escribano-Lopez I, Herance JR, Rocha M, Vila JM, Victor VM (2018) Nanoparticles in Medicine: A Focus on Vascular Oxidative Stress. Oxid Med Cell Longev. https://doi.org/10.1155/2018/6231482

    Article  PubMed  PubMed Central  Google Scholar 

  • McKay DL, Blumberg JB (2002) The role of tea in human health: An update. J Am Coll Nutr 21:1–13

    CAS  PubMed  Google Scholar 

  • Metsalu T, Vilo J (2015) Clustvis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv468

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirza AU, Kareem A, Nami SAA, Khan MS, Rehman S, Bhat SA, MohammadA NN (2018) Biogenic synthesis of iron oxide nanoparticles using Agrewiaoptiva and Prunuspersica phyto species: Characterization, antibacterial and antioxidant activity. J Photoch Photobio B 185:262–274. https://doi.org/10.1016/j.jphotobiol.2018.06.009

    Article  CAS  Google Scholar 

  • Mohamed YM, Azzam AM, Amin BH, Safwat NA (2015) Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol 14:1234–1241. https://doi.org/10.5897/AJB2014.14286

    Article  Google Scholar 

  • Moon JW, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37:1023–1031

    CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    CAS  PubMed  Google Scholar 

  • Moteriya P, Padalia H, Chanda S (2017) Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghiileaf extract. J Gen Eng Biotech 15:505–513

    Google Scholar 

  • Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J Plant Biochem Biotechnol. https://doi.org/10.1007/BF03263300

    Article  Google Scholar 

  • Mystrioti XA, Sparis D, Dermatas D, Papasiopi N, Chrysochoou M (2015) Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters. Bull Environ Contam Toxicol 94:302–307

    CAS  PubMed  Google Scholar 

  • Nejati K, Zabihi R (2012) Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J. https://doi.org/10.1186/1752-153X-6-23

    Article  PubMed  PubMed Central  Google Scholar 

  • Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    CAS  PubMed  Google Scholar 

  • Nisar P, Ali N, Rahman L, Ali M, Shinwari ZK (2019) Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. JBIC J Biol Inorg Chem 24:929–941. https://doi.org/10.1007/s00775-019-01717-7

    Article  CAS  PubMed  Google Scholar 

  • Olapade OA, Depas MM, Jensen ET, McLellan SL (2006) Microbial communities and fecal indicator bacteria associated with Cladophora mats on beach sites along Lake Michigan shores. Appl Environ Microbiol 72(3):1932–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43(4):1027–1032

    CAS  PubMed  Google Scholar 

  • Park HH, Zhang X, Choi YJ, Hill RH (2011) Synthesis of Ag nanostructures by photochemical reduction using citrate-capped pt seeds. J Nanomater. https://doi.org/10.1155/2011/265287

    Article  Google Scholar 

  • Patra JK, Baek KH (2017) Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. J Photochem Photobiol B 173:291–300

    CAS  PubMed  Google Scholar 

  • Pavani KV, Kumar NS (2013) Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species kvp 12. Am J Nanomater 1:24–26

    Google Scholar 

  • Prasad C, Karlapudi S, Venkateswarlu P, Bahadur I, KumarS, (2017) Green arbitrated synthesis of Fe3O4 magnetic nanoparticles with nanorodstructure from pomegranate leaves and Congo red dye degradationstudies for water treatment. J Mol Liq 240:322–328. https://doi.org/10.1016/j.molliq.2017.05.100

    Article  CAS  Google Scholar 

  • Raederstorff DG, Schlachter MF, Elste V, Weber P (2003) Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem 14:326–332

    CAS  PubMed  Google Scholar 

  • RajaK JaculineMM, Jose M, Verma S, Prince AAM, Iangovan K, Sethusankar K, Das SJ (2015) Sol-gel synthesis and characterization of α-Fe2O3 nanoparticles. Superlattices Microstruct. https://doi.org/10.1016/j.spmi.2015.07.044

    Article  Google Scholar 

  • Rajiv P, Bavadharani B, Kumar MN, Vanathi P (2017) Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal Agric Biotechnol 12:45–49

    Google Scholar 

  • Razmavar S, Abdulla MA, Ismail SB, Hassandarvish P (2014) Antibacterial Activity of Leaf Extracts of Baeckeafrutescens against Methicillin-Resistant Staphylococcus aureus. BioMed Res Int. https://doi.org/10.1155/2014/521287

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy N, Jayachandra D, Vali N, Rani M, Sudha Rani S (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng 1(34):115–122

    Google Scholar 

  • Rezaei-Zarchi S, Javed A, Ghani MJ, Soufian S, Firouzabadi FB, Moghaddam AB, Mirjalili SH (2010) Comparative study of antimicrobial activities of TiO2 and CdO nanoparticles against the pathogenic strain of Escherichia coli. Iran J Pathol 5:83–89

    CAS  Google Scholar 

  • Riaz S, Shah SZH, Kayani ZN, Naseem S (2015) Magnetic and Structural Phase Transition in Iron Oxide Nanostructures. Elsevier Ltd., New York, NY, USA, Volume, p 2

    Google Scholar 

  • Riddin T, Gericke M, Whiteley GG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzyme Microb Technol 46(6):501–505

    CAS  PubMed  Google Scholar 

  • Roomi MW, Ivanov V, Kalinovsky T, Niedzwiecki A, RathIn M (2005) In vitro and in vivo antitumorigenic activity of a mixture of lysine, proline, ascorbic acid, and green tea extract on human breast cancer lines MDA-MB-231 and MCF-7. Medical Oncol 22(2):129–138. https://doi.org/10.1385/MO:22:2:129

    Article  CAS  Google Scholar 

  • Samrot AV, Justin C, Padmanaban S, Burman U (2017) A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae. Appl Nanosci 7:17–23. https://doi.org/10.1007/s13204-016-0542-y

    Article  CAS  Google Scholar 

  • Sánchez-López E, Gomes D, Esteruelas G et al (2020) Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials. https://doi.org/10.3390/nano10020292

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhya J, Kalaiselvam S (2020) Biogenic synthesis of magnetic iron oxide nanoparticles using inedible Borassus flabellifer seed coat: characterization, antimicrobial, antioxidant activity and in vitro cytotoxicity analysis. Mater Res Express. https://doi.org/10.1088/2053-1591/ab6642

    Article  Google Scholar 

  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles – a review. Acta Biomater 10(10):4023–4042

    PubMed  Google Scholar 

  • Shah ST, Yehye WA, Saad O, Simarani K, Chowdhury ZZ, Alhadi AA, Al-Ani LA (2017) Surface Functionalization of Iron Oxide Nanoparticles with Gallic Acid as Potential Antioxidant and Antimicrobial Agents. Nanomaterials. https://doi.org/10.3390/nano7100306

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009) Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol 68:312–319

    CAS  Google Scholar 

  • Sidduraju P, Mohan P, Becker K (2002) Studies on the antioxidant activity of Indian Laburnum Cassia fistula L: a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem 79:61–67

    Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82(2):291–295

    CAS  PubMed  Google Scholar 

  • Silva AKA, Espinosa A, Tabi JK, Wilhelm C, Gazeau F (2016) Medical Applications of Iron Oxide Nanoparticles. Wiley-VCH Verlag GmbH & Co Kgaa. https://doi.org/10.1002/9783527691395.ch18

    Article  Google Scholar 

  • Singh BP, Kumar A, Areizaga-Martimez HI, Vega-Olivencia CA, Tomar MS (2017) Synthesis, characterization and electro catalytic ability of γ-Fe2O3 nanoparticles for sensing acetaminophen. Indian J Pure Appl Phys 55:722–728

    Google Scholar 

  • Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988

    CAS  Google Scholar 

  • Siriwardane RV, Cook JM (1985) Interactions of NO and SO2 with Iron Deposited on Silica. J Colloid Interface Sci 104:250–257

    CAS  Google Scholar 

  • Sravanthi K, Ayodhya D, Swamy PY (2018) Green synthesis, characterization of biomaterial-supported zero-valent iron nanoparticles for contaminated water treatment. Anal Sci Technol. https://doi.org/10.1186/s40543-017-0134-9

    Article  Google Scholar 

  • Stanckic S, Suman S, Haque F, Vidic J (2016) Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol 14(1):1–20

    Google Scholar 

  • Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11—A novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27:1861–1869

    CAS  Google Scholar 

  • Sun C, Lee JSH, Zhang M (2008) Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv Drug Deliv Rev 60(11):1252–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioproc E 7:835–840

    Google Scholar 

  • Thakur N, Manna P, Das J (2019) Synthesis and biomedical applications of nanoceria, a redox active nanoparticles. J Nanobiotechnol. https://doi.org/10.1186/s12951-019-0516-9

    Article  Google Scholar 

  • Tian R, Xu J, Luo Q, Hou C, Liu J (2021) Rational Design and Biological Application of Antioxidant Nanozymes. Front Chem. https://doi.org/10.3389/fchem.2020.00831

    Article  PubMed  PubMed Central  Google Scholar 

  • Turakhia B, Chikkala S, Shah S (2019) Novelty of Bioengineered Iron Nanoparticles in Nanocoated Surgical Cotton: A Green Chemistry. Adv Pharmacol Sci. https://doi.org/10.1155/2019/9825969

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadivel N, Rajendran V, Suriyaprabha R, Yuvakkumar R (2012) Catalytic effect of iron nanoparticles on heterocyst, protein and chlorophyll content of catalytic effect of iron nanoparticles on heterocyst. Int J Green Nanotechnol 4:326–338

    CAS  Google Scholar 

  • Vallabani NVS, Vinu A, Singh S, Karakoti A (2020) Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J Colloid Interface Sci 567:154–164

    CAS  PubMed  Google Scholar 

  • Van de Hulst HC (1981) Light Scattering by Small Particles. Dover Publications, New York

    Google Scholar 

  • Wang T, Lin J, Chen Z, Megharaj M, NaiduR, (2014) Green synthesized iron nanoparticles by green tea andeucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    CAS  Google Scholar 

  • Wang Y, Yang CX, Yan XP (2017) Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale 9:9049–9055. https://doi.org/10.1039/c7nr02038d

    Article  CAS  PubMed  Google Scholar 

  • Watal G, Watal A, Rai PK, Rai DK, Sharma G, Sharma B (2013) Biomedical Applications of Nano-antioxidant. Donald Armstrong and Dhruba J. Bharali (eds.), Oxidative Stress and Nanotechnology: Methods and Protocols, Methods in Molecular Biology DOI https://doi.org/10.1007/978-1-62703-475-3_9

  • Weatherill JS, Morris K, Bots P, Stawski TM, Janssen A, Abrahamsen L, Blackham R, Shaw S (2016) Ferrihydrite formation: the role of Fe13 Keggin clusters. Environ Sci Technol 50:9333–9342. https://doi.org/10.1021/acs.est.6b02481

    Article  CAS  PubMed  Google Scholar 

  • Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM (2007) Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imag 25:667–680

    Google Scholar 

  • Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P (2006) Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 136:3512–3518

    Google Scholar 

  • Xiu ZM, Gregory KB, Lowry GV, Alvarez PJ (2010) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44(19):7647–7651

    CAS  PubMed  Google Scholar 

  • Xu H, Aguilar ZP, Yang L, Kuang M, Duan H, Xiong Y, Wei H, Wang A (2011) Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32(36):9758–9765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Zhu Q, Lin X, Lin W, Qin Y, Li Y (2021) The phase behavior of n-ethylpyridinium tetrafluoroborate and sodium-based salts ATPS and its application in 2-chlorophenol extraction. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2020.07.024

    Article  Google Scholar 

  • Yao Q, Gao Y, Gao T, Zhang Y, Harnoode C, Dong A, Liu Y, Xiao L (2016) Surface arming magnetic nanoparticles with amine N-halamines as recyclable antibacterial agents: Construction and evaluation. Colloids Surf B Biointerfaces 144:319–326. https://doi.org/10.1016/j.colsurfb.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS (2008) Zeta Potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cell. Biomed Microdevices 10:321–328

    CAS  PubMed  Google Scholar 

  • Zhou L, Dai S, Xu S, She Y, Li Y, Leveneur S, Qin Y (2021) Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2021.120019

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank SAIF, IIT Bombay and STIC, Cochin University of Science and Technology for assisting while conducting different instrumental analysis.

Funding

The author would like to thank Department of Science and Technology and Biotechnology, Government of West Bengal, India for financial assistance, Project Grant Number: [(263(Sanc.)/ST/P/S&T/1G-65/2017)].

Author information

Authors and Affiliations

Authors

Contributions

First author (MSH) has conducted the overall experiment except antimicrobial potentiality assessment, carry out antioxidant test, analyzed the data and primarily drafted the manuscript. Second author (DD) supervised the antimicrobial work, performed software analysis for post processing of instrumental data. Third author (SG) assisted while performing process variation work, performed antimicrobial test against microbes. Corresponding author (PM) conceptualized the work, help in reviewing and revising the manuscript and data.

Corresponding author

Correspondence to Palash Mandal.

Ethics declarations

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the articles, also the work was purely conducted for research purpose only.

Ethical Approval

This article does not contain any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haydar, M.S., Das, D., Ghosh, S. et al. Implementation of mature tea leaves extract in bioinspired synthesis of iron oxide nanoparticles: preparation, process optimization, characterization, and assessment of therapeutic potential. Chem. Pap. 76, 491–514 (2022). https://doi.org/10.1007/s11696-021-01872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01872-9

Keyword

Navigation