Skip to main content

Advertisement

Log in

Are the Changes in Gastrointestinal Hormone Secretion Necessary for the Success of Bariatric Surgery? A Critical Review of the Literature

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Ghrelin, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) are involved in energy balance regulation and glucose homeostasis. Obesity is characterized by lower fasting levels and blunted postprandial responses of ghrelin, GLP-1, and possibly PYY. Both Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) have been shown to increase postprandial GLP-1 and PYY levels. Human studies have shown that enhanced postprandial GLP-1 and PYY release are associated with favorable weight loss outcomes after RYGB. However, studies in knockout mice have shown that GI hormones are not required for the primary metabolic effects of bariatric surgery. Here, we summarize the complex interaction between obesity, bariatric surgery, and GI hormones in order to determine the exact role of GI hormones in the success of bariatric surgery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purnell JQ. Definitions, classification, and epidemiology of obesity. 2018 Apr 12. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland J, Kaltsas G, Koch C, Kopp P, Korbonits M, Mclachlan R, Morley JE, New M, Purnell J, Singer F, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc; 2000.

    Google Scholar 

  2. Ionut V, Bergman RN. Mechanisms responsible for excess weight loss after bariatric surgery. J Diabetes Sci Technol. 2011;5(5):1263–82.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pucci A, Batterham RL. Mechanisms underlying the weight loss effects of RYGB and SG: similar, yet different. J Endocrinol Investig. 2019;42(2):117–28.

    Article  CAS  Google Scholar 

  4. Latorre R, Sternini C, De Giorgio R, et al. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil. 2016;28(5):620–30.

    Article  CAS  PubMed  Google Scholar 

  5. Ionut V, Burch M, Youdim A, et al. Gastrointestinal hormones and bariatric surgery-induced weight loss. Obesity (Silver Spring). 2013;21(6):1093–103.

    Article  CAS  Google Scholar 

  6. Verhulst PJ, Depoortere I. Ghrelin’s second life: from appetite stimulator to glucose regulator. World J Gastroenterol. 2012;18(25):3183–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Goebel-Stengel M, Hofmann T, Elbelt U, et al. The ghrelin activating enzyme ghrelin-O-acyltransferase (GOAT) is present in human plasma and expressed dependent on body mass index. Peptides. 2013;43:13–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim Abdalla MM. Ghrelin - physiological functions and regulation. Eur Endocrinol. 2015;11(2):90–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37(4):649–61.

    Article  CAS  PubMed  Google Scholar 

  10. Kokkinos A, Tsilingiris D, le Roux CW, et al. Will medications that mimic gut hormones or target their receptors eventually replace bariatric surgery? Metabolism. 2019;100:153960.

    Article  CAS  PubMed  Google Scholar 

  11. Steinert RE, Feinle-Bisset C, Asarian L, et al. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol Rev. 2017;97(1):411–63.

    Article  PubMed  Google Scholar 

  12. Cummings DE, Purnell JQ, Frayo RS, et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50(8):1714–9.

    Article  CAS  PubMed  Google Scholar 

  13. Koliaki C, Kokkinos A, Tentolouris N, et al. The effect of ingested macronutrients on postprandial ghrelin response: a critical review of existing literature data. Int J Pept. 2010;2010:710852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Druce MR, Wren AM, Park AJ, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes. 2005;29(9):1130–6.

    Article  CAS  Google Scholar 

  15. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.

    Article  CAS  PubMed  Google Scholar 

  16. Tasyurek HM, Altunbas HA, Balci MK, et al. Incretins: their physiology and application in the treatment of diabetes mellitus. Diabetes Metab Res Rev. 2014;30(5):354–71.

    Article  CAS  PubMed  Google Scholar 

  17. Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993;138(1):159–66.

    Article  CAS  PubMed  Google Scholar 

  18. Lean ME, Malkova D. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence? Int J Obes. 2016;40(4):622–32.

    Article  CAS  Google Scholar 

  19. Guida C, Ramracheya R. PYY, A therapeutic option for type 2 diabetes? Clin Med Insights Endocrinol Diabetes. 2020;13:1179551419892985.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Glavas MM, Grayson BE, Allen SE, et al. Characterization of brainstem peptide YY (PYY) neurons. J Comp Neurol. 2008;506(2):194–210.

    Article  CAS  PubMed  Google Scholar 

  21. Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci. 2003;994:162–8.

    Article  CAS  PubMed  Google Scholar 

  22. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418(6898):650–4.

    Article  CAS  PubMed  Google Scholar 

  23. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.

    Article  CAS  PubMed  Google Scholar 

  24. Chaudhri O, Small C, Bloom S. Gastrointestinal hormones regulating appetite. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361(1471):1187–209.

    Article  CAS  Google Scholar 

  25. Shah M, Vella A. Effects of GLP-1 on appetite and weight. Rev Endocr Metab Disord. 2014;15(3):181–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Angrisani L, Santonicola A, Iovino P, et al. Bariatric Surgery Worldwide 2013. Obes Surg. 2015;25(10):1822–32.

    Article  CAS  PubMed  Google Scholar 

  27. Ali M, El Chaar M, Ghiassi S. Rogers AM; American Society for Metabolic and Bariatric Surgery Clinical Issues Committee. American Society for Metabolic and Bariatric Surgery updated position statement on sleeve gastrectomy as a bariatric procedure. Surg Obes Relat Dis. 2017;13(10):1652–7.

    Article  PubMed  Google Scholar 

  28. Peterli R, Wölnerhanssen BK, Peters T, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial. JAMA. 2018;319(3):255–65.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep. 2017;6(3):253–65.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Malin SK, Kashyap SR. Differences in weight loss and gut hormones: Roux-en-Y gastric bypass and sleeve gastrectomy surgery. Curr Obes Rep. 2015;4(2):279–86.

    Article  PubMed  Google Scholar 

  31. Makaronidis JM, Batterham RL. Potential mechanisms mediating sustained weight loss following Roux-en-Y gastric bypass and sleeve gastrectomy. Endocrinol Metab Clin N Am. 2016;45(3):539–52.

    Article  Google Scholar 

  32. Pournaras DJ, Le Roux CW. The effect of bariatric surgery on gut hormones that alter appetite. Diabetes Metab. 2009;35(6 Pt 2):508–12.

    Article  CAS  PubMed  Google Scholar 

  33. Xu HC, Pang YC, Chen JW, et al. Systematic review and meta-analysis of the change in ghrelin levels after Roux-en-Y gastric bypass. Obes Surg. 2019;29(4):1343–51.

    Article  PubMed  Google Scholar 

  34. Oliván B, Teixeira J, Bose M, et al. Effect of weight loss by diet or gastric bypass surgery on peptide YY3-36 levels. Ann Surg. 2009;249(6):948–53.

    Article  PubMed  Google Scholar 

  35. Peterli R, Wölnerhanssen B, Peters T, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg. 2009;250(2):234–41.

    Article  PubMed  Google Scholar 

  36. Peterli R, Steinert RE, Woelnerhanssen B, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. 2012;22(5):740–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nosso G, Griffo E, Cotugno M, et al. Comparative effects of Roux-en-Y gastric bypass and sleeve gastrectomy on glucose homeostasis and incretin hormones in obese type 2 diabetic patients: a one-year prospective study. Horm Metab Res. 2016;48(5):312–7.

    Article  CAS  PubMed  Google Scholar 

  38. McCarty TR, Jirapinyo P, Thompson CC. Effect of sleeve gastrectomy on ghrelin, GLP-1, PYY, and GIP gut hormones: a systematic review and meta-analysis. Ann Surg. 2020;272(1):72–80.

    Article  PubMed  Google Scholar 

  39. Alamuddin N, Vetter ML, Ahima RS, et al. Changes in fasting and prandial gut and adiposity hormones following vertical sleeve gastrectomy or Roux-en-Y-Gastric bypass: an 18-month prospective study. Obes Surg. 2017;27(6):1563–72.

    Article  PubMed  Google Scholar 

  40. Gu L, Lin K, Du N, Ng DM, Lou D, Chen P. Differences in the effects of laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass on gut hormones: systematic and meta-analysis. Surg Obes Relat Dis. 2021;17(2):444–455. https://doi.org/10.1016/j.soard.2020.10.018.

  41. Chronaiou A, Tsoli M, Kehagias I, et al. Lower ghrelin levels and exaggerated postprandial peptide-YY, glucagon-like peptide-1, and insulin responses, after gastric fundus resection, in patients undergoing Roux-en-Y gastric bypass: a randomized clinical trial. Obes Surg. 2012;22(11):1761–70.

    Article  PubMed  Google Scholar 

  42. Jirapinyo P, Jin DX, Qazi T, et al. A meta-analysis of GLP-1 after Roux-En-Y gastric bypass: impact of surgical technique and measurement strategy. Obes Surg. 2018;28(3):615–26.

    Article  PubMed  Google Scholar 

  43. Laferrère B. Effect of gastric bypass surgery on the incretins. Diabetes Metab. 2009;35(6 Pt 2):513–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Min T, Prior SL, Churm R, et al. Effect of laparoscopic sleeve gastrectomy on static and dynamic measures of glucose homeostasis and incretin hormone response 4-years post-operatively. Obes Surg. 2020;30(1):46–55.

    Article  PubMed  Google Scholar 

  45. Harvey EJ, Arroyo K, Korner J, et al. Hormone changes affecting energy homeostasis after metabolic surgery. Mt Sinai J Med. 2010;77(5):446–65.

    Article  PubMed  Google Scholar 

  46. Yan W, Polidori D, Yieh L, et al. Effects of meal size on the release of GLP-1 and PYY after Roux-en-Y gastric bypass surgery in obese subjects with or without type 2 diabetes. Obes Surg. 2014;24(11):1969–74.

    Article  PubMed  Google Scholar 

  47. Ramón JM, Salvans S, Crous X, et al. Effect of Roux-en-Y gastric bypass vs sleeve gastrectomy on glucose and gut hormones: a prospective randomised trial. J Gastrointest Surg. 2012;16(6):1116–22.

    Article  PubMed  Google Scholar 

  48. Nannipieri M, Baldi S, Mari A, et al. Roux-en-Y gastric bypass and sleeve gastrectomy: mechanisms of diabetes remission and role of gut hormones. J Clin Endocrinol Metab. 2013;98(11):4391–9.

    Article  CAS  PubMed  Google Scholar 

  49. Chambers AP, Kirchner H, Wilson-Perez HE, et al. The effects of vertical sleeve gastrectomy in rodents are ghrelin independent. Gastroenterology. 2013;144(1):50–52.e5.

    Article  CAS  PubMed  Google Scholar 

  50. Wilson-Pérez HE, Chambers AP, Ryan KK, et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency. Diabetes. 2013;62(7):2380–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ye J, Hao Z, Mumphrey MB, et al. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Phys Regul Integr Comp Phys. 2014;306(5):R352–62.

    CAS  Google Scholar 

  52. Boland B, Mumphrey MB, Hao Z, et al. The PYY/Y2R-deficient mouse responds normally to high-fat diet and gastric bypass surgery. Nutrients. 2019;11(3):585.

    Article  CAS  PubMed Central  Google Scholar 

  53. le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246(5):780–5.

    Article  PubMed  Google Scholar 

  54. Dirksen C, Jørgensen NB, Bojsen-Møller KN, et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes. 2013;37(11):1452–9.

    Article  CAS  Google Scholar 

  55. de Hollanda A, Jiménez A, Corcelles R, et al. Gastrointestinal hormones and weight loss response after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2014;10(5):814–9.

    Article  PubMed  Google Scholar 

  56. de Hollanda A, Casals G, Delgado S, et al. Gastrointestinal hormones and weight loss maintenance following Roux-en-Y gastric bypass. J Clin Endocrinol Metab. 2015;100(12):4677–84.

    Article  PubMed  CAS  Google Scholar 

  57. Santo MA, Riccioppo D, Pajecki D, et al. Weight regain after gastric bypass: influence of gut hormones. Obes Surg. 2016;26(5):919–25.

    Article  PubMed  Google Scholar 

  58. Sima E, Webb DL, Hellström PM, et al. Non-responders after gastric bypass surgery for morbid obesity: peptide hormones and glucose homeostasis. Obes Surg. 2019;29(12):4008–17.

    Article  PubMed  Google Scholar 

  59. Kittah E, Camilleri M, Jensen MD, et al. A pilot study examining the effects of GLP-1 receptor blockade using exendin-(9,39) on gastric emptying and caloric intake in subjects with and without bariatric surgery. Metab Syndr Relat Disord. 2020;18(9):406–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, McGowan BM, Rosenstock J, Tran MTD, Wadden TA, Wharton S, Yokote K, Zeuthen N, Kushner RF; STEP 1 Study Group. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989. https://doi.org/10.1056/NEJMoa2032183

  61. Rye P, Modi R, Cawsey S, et al. Efficacy of high-dose liraglutide as an adjunct for weight loss in patients with prior bariatric surgery. Obes Surg. 2018;28(11):3553–8.

    Article  PubMed  Google Scholar 

  62. Svane MS, Jørgensen NB, Bojsen-Møller KN, et al. Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int J Obes. 2016;40(11):1699–706.

    Article  CAS  Google Scholar 

  63. Williams DL, Baskin DG, Schwartz MW. Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation. Diabetes. 2006;55(12):3387–93.

    Article  CAS  PubMed  Google Scholar 

  64. Nielsen MS, Ritz C, Wewer Albrechtsen NJ, et al. Oxyntomodulin and glicentin may predict the effect of bariatric surgery on food preferences and weight loss. J Clin Endocrinol Metab. 2020;105(4):dgaa061.

    Article  PubMed  Google Scholar 

  65. Patrício BG, Morais T, Guimarães M, et al. Gut hormone release after gastric bypass depends on the length of the biliopancreatic limb. Int J Obes. 2019;43(5):1009–18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Lampropoulos.

Ethics declarations

Ethics Approval

For this type of study, formal consent is not required.

Consent to Participate

Informed consent does not apply.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Ghrelin, GLP-1, and PYY are involved in energy balance regulation.

• RYGB and SG cause a marked increase in postprandial GLP-1 and PYY levels.

• Enhanced postprandial GLP-1 release is associated with success of RYGB.

• Causality and the importance of this association have not been established.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lampropoulos, C., Alexandrides, T., Tsochatzis, S. et al. Are the Changes in Gastrointestinal Hormone Secretion Necessary for the Success of Bariatric Surgery? A Critical Review of the Literature. OBES SURG 31, 4575–4584 (2021). https://doi.org/10.1007/s11695-021-05568-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-021-05568-7

Keywords

Navigation