Skip to main content

Advertisement

Log in

Physical and antimicrobial performance of edible films based on oregano essential oil and tapioca starch emulsions

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The development of environmentally friendly materials based on natural and biodegradable sources, such as starch, represents an interesting alternative to attend to the environmental problems caused by excess waste from petroleum-based packaging. The use of emulsions to obtain edible films is a novel strategy to be explored to determine how formulation and constitution affect film properties. In such context, gelatinized tapioca starch (TS) and oregano essential oil (OEO) were used to produce new active edible films using casting technique and their physical and antimicrobial properties were studied. Regarding the emulsion constitution, which was obtained employing an high-speed homogenizer, exposure to ultrasound (US) and surfactant Tween 80 (T80) content, had relevant effects on micro (0.2 to 105 μm) and nanometric (63 to 212 nm) size distributions of the TS particles and the OEO droplets. Exposure to US reduced (4.8–34 μm) and stabilized microparticles but promoted nanoparticle aggregation during storage, independently of T80 addition. T80 helped to stabilize coarse emulsions showing a Sauter diameter of 21.4 μm along storage. Films from coarse emulsions containing OEO and T80 were stiffer (stress at break: 1.8 MPa), less soluble in water (≈ 35%) and yellowish than films without T80. In addition, surfactant promoted a discontinuous microstructure of the film matrix. Both films containing OEO showed a good capacity to inhibit the growth of spoilage microorganisms (≈ 2.5–4 log cycles reductions). Due to their performance as physical and antimicrobial barriers, the films can be proposed as active packaging alternatives to stabilize and release natural preservatives to promote food preservation during storage and as a tool to support environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. D. Trajkovska, N.M. Daniloski, N. D’Cunha, A.T. Naumovski, Broache. Food Res Int. (2021). https://doi.org/10.1016/j.foodres.2020.109981

    Article  Google Scholar 

  2. V.T. WeligamaThuppahige, M.A. Karim, Compr. Rev. Food Sci. Food Saf. (2022). https://doi.org/10.1111/1541-4337.12873

    Article  Google Scholar 

  3. N. Tamimi, A. Mohammadi, H. Hashemi-Moghaddam, H. Baghaie, Food Sci. Nutr. (2021). https://doi.org/10.1002/fsn3.2426

    Article  PubMed  PubMed Central  Google Scholar 

  4. A. Esfahani, A. Mohammadi, H. Baghaei, L. Nouri, Food Sci. Nutr. (2022). https://doi.org/10.1002/fsn3.2918

    Article  PubMed  PubMed Central  Google Scholar 

  5. S. Paidari, N. Zamindar, R. Tahergorabi, M. Kargar, S. Ezzati, N. Shirani, S. Hossein, J. Food Meas. Charact. (2021). https://doi.org/10.1007/s11694-021-00979-7

    Article  Google Scholar 

  6. N. Mahdavi, H. Ahari, A.A. Motallebi, S. Paidari, J. Food Meas. Charact. (2021). https://doi.org/10.1007/s11694-021-01082-7

    Article  Google Scholar 

  7. S. Berti, R.J. Jagus, S.K. Flores, Food Bioprocess. Technol. (2021). https://doi.org/10.1007/s11947-021-02669-0

    Article  Google Scholar 

  8. M. Mohammadi, R. Yekta, H. Hosseini, F. Shahraz, S. Hosseini, S. Shojaee-Aliabadi, A. Mohammadi, J. Food Meas. Charact. (2023). https://doi.org/10.1007/s11694-022-01509-9

    Article  Google Scholar 

  9. R. Liang, S. Xu, C. Shoemaker, Y. Li, F. Zhong, Q. Huang, J. Agric. Food Chem. (2012). https://doi.org/10.1021/jf301129k

    Article  PubMed  Google Scholar 

  10. E.K. Silva, M.T. Gomes, M.D. Hubinger, R. Lopes Cunha, M.A.A. Meireles, Food Hydrocolloids. (2015). https://doi.org/10.1016/j.foodhyd.2015.01.001

    Article  Google Scholar 

  11. K. Sharma, A. Babaei, K. Oberoi, K. Aayush, R. Sharma, S. Sharma, Bioprocess Technol. (2022). https://doi.org/10.1007/s11947-022-02811-6

    Article  Google Scholar 

  12. R. Herrera Brandelero, F. Yamashita, M.V. Eiras Grossman, Carbohydr. Polym. (2010). https://doi.org/10.1016/j.carbpol.2010.06.034

    Article  Google Scholar 

  13. A.G. Souza, R.R. Ferreira, L.C. Paula, S.K. Mitra, D.S. Rosa, Food Packag. Shelf Life (2021). https://doi.org/10.1016/j.fpsl.2020.100615

    Article  Google Scholar 

  14. P. Alzate, S. Miramont, S. Flores, L. Gerschenson, Starch/Stärke (2017). https://doi.org/10.1002/star.201600261

    Article  Google Scholar 

  15. M.B. Vásconez, S. Flores, C. Campos, J. Alvarado, L. Gerschenson, Food Res. Int. (2009). https://doi.org/10.1016/j.foodres.2009.02.026

    Article  Google Scholar 

  16. S. Abbas, K. Hayat, E. Karangwa, M. Bashari, X. Zhang, Food Eng. Rev. (2013). https://doi.org/10.1007/s12393-013-9066-3

    Article  Google Scholar 

  17. P. Singh, G. Kaur, A. Singh, P. Kaur, J. Food Meas. Charact. (2023). https://doi.org/10.1007/s11694-022-01635-4

    Article  Google Scholar 

  18. P. Alzate, L. Gerschenson, S. Flores, Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116759

    Article  PubMed  Google Scholar 

  19. A. Hashtjin, S. Abbasi, Food Hydrocolloids (2015). https://doi.org/10.1016/j.foodhyd.2014.08.017

    Article  Google Scholar 

  20. V. Xu, J. Yang, S. Hua, Y. Hong, Z. Gu, L. Cheng, Z. Li, C. Li, Trends Food Sci. Technol. (2020). https://doi.org/10.1016/j.tifs.2020.09.026

    Article  PubMed  PubMed Central  Google Scholar 

  21. K. Silva, E. Azevedo, V.M. Cunha, R.L. Hubinger, M.D. Meireles, Food Hydrocolloids (2016). https://doi.org/10.1016/j.foodhyd.2015.12.006

    Article  Google Scholar 

  22. B. Saberi, S. Chockchaisawasdee, J. Golding, C. Scarlett, C. Stathopoulos, Food Hydrocolloids (2017). https://doi.org/10.1016/j.foodhyd.2017.05.042

    Article  Google Scholar 

  23. R. Ortega-Toro, A. Jiménez, P. Talens, A. Chiralt, Food Hydrocolloids (2014). https://doi.org/10.1016/j.foodhyd.2013.11.011

    Article  Google Scholar 

  24. S. Santacruz, C. Rivadeneira, M. Castro, Food Hydrocolloids (2015). https://doi.org/10.1016/j.foodhyd.2015.03.019

    Article  Google Scholar 

  25. A. Sanchez, E. Alegria, H. Bermeo, Y. Bohorquez, H. Villada, L. Daza, C. Valenzuela, J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-022-01491-2

    Article  Google Scholar 

  26. D. Kilinc, B. Ocak, Ö. Özdestan-Ocak, J. Food Meas. Charact. (2021). https://doi.org/10.1007/s11694-020-00683-y

    Article  Google Scholar 

  27. J. Prakash Maran, V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Int. J. Biol. Macromol. (2013). https://doi.org/10.1016/j.ijbiomac.2013.06.029

    Article  PubMed  Google Scholar 

  28. S. Hosseini, M. Rezaei, M. Zandi, F. Farahmandghavi, Ind. Crops Prod. (2015). https://doi.org/10.1016/j.indcrop.2015.01.062

    Article  Google Scholar 

  29. X. Song, G. Zuoa, F. Chena, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.114

    Article  PubMed  PubMed Central  Google Scholar 

  30. T.L. Cao, K.B. Song, Food Hydrocolloids (2019). https://doi.org/10.1016/j.foodhyd.2019.105198

    Article  Google Scholar 

  31. Y. Wang, J. Luo, X. Hou, H. Wu, Q. Li, S. Li, Q. Luo, M. Li, X. Liu, G. Shen, A. Cheng, Z. Zhang, LWT Food Sci Technol. (2022). https://doi.org/10.1016/j.lwt.2022.113392

    Article  Google Scholar 

  32. C.K. Nielsen, J. Kjems, T. Mygind, T. Snabe, R.L. Meyer, Front. Microbiol. (2016). https://doi.org/10.3389/fmicb.2016.01878

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Universidad de Buenos Aires (UBACyT 20020170100092BA 2018–2022), Agencia Nacional de Promoción Científica y Tecnológica (PICT 2019-1842).

Author information

Authors and Affiliations

Authors

Contributions

PA performed the experiments and analyzed data, wrote the main manuscript text and prepared figures. LG contributed with conceptualization and resources. GR reviewed and edited the manuscript and contributed with resources. SF planned the investigation and methodology, elaborated conceptualization, contributed resources, analyzed data, wrote the main manuscript text, supervised the project, contributed with resources and funding and wrote the original draft, reviewed and edited the manuscript.

Corresponding author

Correspondence to Silvia Flores.

Ethics declarations

Competing interests

None of the authors have a conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Supplementary file2 (DOCX 1460 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzate, P., Gerschenson, L., Rojas, G. et al. Physical and antimicrobial performance of edible films based on oregano essential oil and tapioca starch emulsions. Food Measure 17, 4823–4833 (2023). https://doi.org/10.1007/s11694-023-02011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02011-6

Keywords

Navigation