Skip to main content
Log in

Entrapment of curcumin in isolated soy protein-alginate nanogels: antioxidant stability and in vitro gastrointestinal digestion

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In the present study, isolated soy protein/sodium alginate (ISP/SA) nanoparticles were fabricated for the target delivery of curcumin. Response surface method of box-Benken design was used to evaluate the effects of ISP (1.0–4.0% (w/v)), SA (0.03–0.07% (w/v)) and CaCl2 (0.003–0.01% (w/v)) concentration on physicochemical properties of ISP/SA nanoparticles, and selection of optimum nanoparticles. The results showed that the soluble complex of ISP/SA was occurred at pH = 5.8. The optimum concentrations of ISP, SA, and CaCl2 for the creation of ISP/SA nanoparticle were 1.6% (w/v), 0.069% (w/v), and 0.008% (w/v), respectively. The optimum nanoparticle had a stable dispersion with the zeta potential, %EE, %LC and particle size of −46.5 mV, 99.86%, 0.60%, and 120 nm, respectively. Atomic force microscope images confirmed the formation of spherical particles with a smooth surface. In simulated intestinal conditions, 25% release of curcumin from ISP/SA nanoparticles was reported. The kinetics of curcumin release was consistent with the Peppas model, based on the mechanism of erosion and diffusion. Curcumin-loaded ISP/SA nanoparticles had more thermal stability than curcumin-free (p˂0.05).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. A.V. Kabanov, S.V. Vinogradov, Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed. 48(30), 5418–5429 (2009)

    Article  CAS  Google Scholar 

  2. B. Jin et al., Self-assembled modified soy protein/dextran nanogel induced by ultrasonication as a delivery vehicle for riboflavin. Molecules 21(3), 282 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. Khoshmanzar et al., Investigation of effective parameters on particle size, zeta potential and steady rheological properties of colloidal system based on carrageenan-caseinate nanoparticles. Res. Innov. Food Sci. Technol. 1(4), 255–272 (2013)

    Google Scholar 

  4. F. Zhao et al., Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4), 2054–2130 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D.P. Jaramillo, R.F. Roberts, J.N. Coupland, Effect of pH on the properties of soy protein–pectin complexes. Food Res. Int. 44(4), 911–916 (2011)

    Article  CAS  Google Scholar 

  6. A. Dodero et al., Rheological properties of sodium alginate solutions in the presence of added salt: an application of Kulicke equation. Rheol. Acta (2020). https://doi.org/10.1007/s00397-020-01206-8

    Article  Google Scholar 

  7. K. Yao et al., Tailoring zein nanoparticle functionality using biopolymer coatings: impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions. Food Hydrocoll. 79, 262–272 (2018)

    Article  CAS  Google Scholar 

  8. S. Naji-Tabasi et al., Investigation of oleogel properties prepared by pickering emulsion-templated stabilized with solid particles of basil seed gum and isolated soy protein as a fat substitute in cream. Res. Innov. Food Sci. Technol. 9(3), 267–280 (2020)

    Google Scholar 

  9. F.-P. Chen, B.-S. Li, C.-H. Tang, Nanocomplexation of soy protein isolate with curcumin: influence of ultrasonic treatment. Food Res. Int. 75, 157–165 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. J. Zhang et al., Preparation and in vitro evaluation of calcium-induced soy protein isolate nanoparticles and their formation mechanism study. Food Chem. 133(2), 390–399 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. S. Naji-Tabasi et al., Nanoparticles fabrication of soy protein isolate and basil seed gum (Ocimum bacilicum L.) complex as pickering stabilizers in emulsions. J Dispers. Sci. Technol. (2019). https://doi.org/10.1080/01932691.2019.1703736

    Article  Google Scholar 

  12. B. Sarmento et al., Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J. Nanosci. Nanotechnol. 7(8), 2833–2841 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. F. Sarei et al., Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J. Pharm. Sci. 75(4), 442 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. Sarika, N.R. James, D.K. Raj, Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde–gelatin nanogels. Mater. Sci. Eng., C 68, 251–257 (2016)

    Article  Google Scholar 

  15. R. Ahdyani et al., Formulation and characterization of timolol maleate-loaded nanoparticles gel by ionic gelation method using chitosan and sodium alginate. Int. J. Appl. Pharm 11, 48–54 (2019)

    Article  CAS  Google Scholar 

  16. C.L. Wu et al., Formation and characterisation of food protein–polysaccharide thermal complex particles: effects of pH, temperature and polysaccharide type. Int. J. Food Sci. Technol. 55(3), 1368–1374 (2020)

    Article  CAS  Google Scholar 

  17. L. Dai et al., Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem. 237, 1163–1171 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. L. Wang et al., Nanoparticles prepared by proso millet protein as novel curcumin delivery system. Food Chem. 240, 1039–1046 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. S. Sheikhzadeh et al., Nanoencapsulation of curcumin by sodium caseinate and gum Arabic. Agro Food Ind Hi Tech 26(6), 49–52 (2015)

    CAS  Google Scholar 

  20. M.L.F. Freitas, K.M. Albano, V.R.N. Telis, Characterization of biopolymers and soy protein isolate-high-methoxyl pectin complex. Polímeros 27, 62–67 (2017)

    Article  Google Scholar 

  21. S. Naji-Tabasi, S.M.A. Razavi, H. Mehditabar, Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohyd. Polym. 157, 1703–1713 (2017)

    Article  CAS  Google Scholar 

  22. S. Naji-Tabasi et al., Nanoparticles fabrication of soy protein isolate and basil seed gum (Ocimum bacilicum L.) complex as pickering stabilizers in emulsions. J. Dispers. Sci. Technol. 42(5), 633–640 (2021)

    Article  CAS  Google Scholar 

  23. S. Shahbazizadeh et al., Development of Cress Seed Gum Hydrogel and Investigation of its Potential Application in the Delivery of Curcumin. J. Sci. Food Agric. 101(15), 6505–6513 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. S. Solghi et al., The encapsulation of curcumin by whey protein: assessment of the stability and bioactivity. J. Food Process Eng. 43(6), e13403 (2020)

    Article  CAS  Google Scholar 

  25. X. Kong et al., Characteristics of soy protein isolate/gum arabic-stabilized oil-in-water emulsions: influence of different preparation routes and pH. RSC Adv. 7(51), 31875–31885 (2017)

    Article  CAS  Google Scholar 

  26. N. Chen et al., Stable and pH-sensitive protein nanogels made by self-assembly of heat denatured soy protein. J. Agric. Food Chem. 62(39), 9553–9561 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. C. Liu et al., Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food Hydrocoll. 77, 834–842 (2018)

    Article  CAS  Google Scholar 

  28. H. Mirhosseini et al., Effect of Arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids Surf., A 315(1–3), 47–56 (2008)

    Article  CAS  Google Scholar 

  29. B. Gh, Gum arabic-caseinate nanocomplexes bearing β-carotene (2): studying of particle size distribution, zeta potential, morphology and encapsulation efficiency. J. Food Res. 26(4), 763–778 (2017)

    Google Scholar 

  30. S. Khalloufi et al., Flaxseed gums and their adsorption on whey protein-stabilized oil-in-water emulsions. Food Hydrocoll. 23(3), 611–618 (2009)

    Article  CAS  Google Scholar 

  31. M.G. Carneiro-da-Cunha et al., Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohyd. Polym. 85(3), 522–528 (2011)

    Article  CAS  Google Scholar 

  32. G.-Q. Huang et al., Complex coacervation of soybean protein isolate and chitosan. Food Chem. 135(2), 534–539 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. H. Daemi, M. Barikani, Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica 19(6), 2023–2028 (2012)

    Article  CAS  Google Scholar 

  34. H. Daemi, M. Barikani, M. Barmar, Variations in calcium and alginate ions concentration in relation to the properties of calcium alginate nanoparticles. Sci. Technol. 26(1), 25–32 (2013)

    Google Scholar 

  35. C. Liu, F. Cheng, X. Yang, Fabrication of a soybean bowman–birk inhibitor (bbi) nanodelivery carrier to improve bioavailability of curcumin. J. Agric. Food Chem. 65(11), 2426–2434 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. L. Zhang et al., Alginate-shelled SPI nanoparticle for encapsulation of resveratrol with enhanced colloidal and chemical stability. Food Hydrocoll. 90, 313–320 (2019)

    Article  CAS  Google Scholar 

  37. Z. Teng, Y. Luo, Q. Wang, Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. J. Agric. Food Chem. 60(10), 2712–2720 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. A. Tapal, P.K. Tiku, Complexation of curcumin with soy protein isolate and its implications on solubility and stability of curcumin. Food Chem. 130(4), 960–965 (2012)

    Article  CAS  Google Scholar 

  39. E. Çelik et al., The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks. Mater. Sci. Eng., C 66, 221–229 (2016)

    Article  Google Scholar 

  40. Q. Cheng et al., Dual cross-linked hydrogels with injectable, self-healing, and antibacterial properties based on the chemical and physical cross-linking. Biomacromol 22(4), 1685–1694 (2021)

    Article  CAS  Google Scholar 

  41. S. Peng et al., Utilization of biopolymers to stabilize curcumin nanoparticles prepared by the pH-shift method: caseinate, whey protein, soy protein and gum Arabic. Food Hydrocoll. 107, 105963 (2020)

    Article  CAS  Google Scholar 

  42. L.K. Voon, S.C. Pang, S.F. Chin, Optimizing delivery characteristics of curcumin as a model drug via tailoring mean diameter ranges of cellulose beads. Int. J. Polymer Sci. (2017). https://doi.org/10.1155/2017/2581767

    Article  Google Scholar 

  43. J.D.P. Soares, J.E. Santos, G.O. Chierice, E.T.G. Cavalheiro, Thermal behavior of alginic acid and its sodium salt. Eclética Química. 29(2), 57–64 (2004)

    Article  CAS  Google Scholar 

  44. L. Chen et al., Soy protein isolate-carboxymethyl cellulose conjugates with pH sensitivity for sustained avermectin release. R. Soc. Open Sci. 6(7), 190685 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. I.M. Fareez et al., Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. Int. J. Biol. Macromol. 72, 1419–1428 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. A.K. Dewangan, S. Varkey, S. Mazumder, Synthesis of curcumin loaded CMCAB nanoparticles for treatment of rheumatoid arthritis (International conference on chemical. environmental and biological sciences, CEBS Dubai, 2015)

    Google Scholar 

  47. H. Shoukat et al., Development of β-cyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) hybrid nanogels as nano-drug delivery carriers to enhance the solubility of rosuvastatin: an in vitro and in vivo evaluation. PLoS ONE 17(1), e0263026 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. K.M. Rao et al., Synthesis and characterization of biodegradable Poly (Vinyl caprolactam) grafted on to sodium alginate and its microgels for controlled release studies of an anticancer drug. J. Appl. Pharm. Sci. 3(6), 61–69 (2013)

    Google Scholar 

  49. W. Gao et al., Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng. 44(6), 2049–2061 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  50. C.M. Talbott, S. Au-NP, Spectroscopic Characterization of Nanoparticles for Potential Drug Discovery. Application News (2014)

  51. P. Li et al., Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int. J. Biomed. Sci. 4(3), 221 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. P.K. Mohan et al., Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib. Spectrosc. 62, 77–84 (2012)

    Article  CAS  Google Scholar 

  53. O.S. Reddy et al., Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery. J. Pharm. Anal. 11(2), 191–199 (2021)

    Article  Google Scholar 

  54. L. Pathak, A. Kanwal, Y. Agrawal, Curcumin loaded self assembled lipid-biopolymer nanoparticles for functional food applications. J. Food Sci. Technol. 52(10), 6143–6156 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. N.T. Nguyen et al., Curcuminoid co-loading platinum heparin-poloxamer p403 nanogel increasing effectiveness in antitumor activity. Gels 8(1), 59 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. I.R. Ariyarathna, D.N. Karunaratne, Microencapsulation stabilizes curcumin for efficient delivery in food applications. Food Packag. Shelf Life 10, 79–86 (2016)

    Article  Google Scholar 

  57. F.-P. Chen, B.-S. Li, C.-H. Tang, Nanocomplexation between curcumin and soy protein isolate: influence on curcumin stability/bioaccessibility and in vitro protein digestibility. J. Agric. Food Chem. 63(13), 3559–3569 (2015)

    Article  CAS  PubMed  Google Scholar 

  58. C. Pornpitchanarong et al., Curcumin-incorporated thiolated chitosan/alginate nanocarriers: physicochemical properties and release mechanism. Indian J. Pharm. Sci. 82(1), 101–108 (2020)

    Article  Google Scholar 

  59. M. Mohammadian et al., Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocoll. 87, 902–914 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the laboratories of the Research Institute of Food Science and Technology, Mashhad, Iran for their support to conduct the research work.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

SS: Data curation, formal analysis, investigation, methodology, writing— original draft. SNT: conceptualisation, supervision, project administration, review and editing, validation. MSN: supervision, review and editing, conceptualisation, validation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sara Naji-Tabasi.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Ethical approval

This study does not involve any human or animal testing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazizadeh, S., Naji-Tabasi, S. & Shahidi-Noghabi, M. Entrapment of curcumin in isolated soy protein-alginate nanogels: antioxidant stability and in vitro gastrointestinal digestion. Food Measure 16, 4754–4770 (2022). https://doi.org/10.1007/s11694-022-01562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01562-4

Keywords

Navigation