Skip to main content
Log in

Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Nanoparticles have offered a unique set of properties for drug delivery including high drug loading capacity, combinatorial delivery, controlled and sustained drug release, prolonged stability and lifetime, and targeted delivery. To further enhance therapeutic index, especially for localized application, nanoparticles have been increasingly combined with hydrogels to form a hybrid biomaterial system for controlled drug delivery. Herein, we review recent progresses in engineering such nanoparticle-hydrogel hybrid system (namely ‘NP-gel’) with a particular focus on its application for localized drug delivery. Specifically, we highlight four research areas where NP-gel has shown great promises, including (1) passively controlled drug release, (2) stimuli-responsive drug delivery, (3) site-specific drug delivery, and (4) detoxification. Overall, integrating therapeutic nanoparticles with hydrogel technologies creates a unique and robust hybrid biomaterial system that enables effective localized drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Al Ghanami, R. C., B. R. Saunders, C. Bosquillon, K. M. Shakesheff, and C. Alexander. Responsive particulate dispersions for reversible building and deconstruction of 3D cell environments. Soft Matter 6:5037–5044, 2010.

    Article  CAS  Google Scholar 

  2. Aryal, S., C.-M. J. Hu, and L. Zhang. Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol. Pharm. 8:1401–1407, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baumann, M. D., C. E. Kang, J. C. Stanwick, Y. Wang, H. Kim, Y. Lapitsky, and M. S. Shoichet. An injectable drug delivery platform for sustained combination therapy. J. Control. Release 138:205–213, 2009.

    Article  CAS  PubMed  Google Scholar 

  4. Baumann, M. D., C. E. Kang, C. H. Tator, and M. S. Shoichet. Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials 31:7631–7639, 2010.

    Article  CAS  PubMed  Google Scholar 

  5. Bishop, K. J. M., C. E. Wilmer, S. Soh, and B. A. Grzybowski. Nanoscale forces and their uses in self-assembly. Small 5:1600–1630, 2009.

    Article  CAS  PubMed  Google Scholar 

  6. Blanco, E., H. Shen, and M. Ferrari. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33:941–951, 2015.

    Article  CAS  PubMed  Google Scholar 

  7. Caccavo, D., S. Cascone, G. Lamberti, and A. A. Barba. Modeling the drug release from hydrogel-based matrices. Mol. Pharm. 12:474–483, 2015.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, M., S. Gao, M. Dong, J. Song, C. Yang, K. A. Howard, J. Kjems, and F. Besenbacher. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for sirna delivery. ACS Nano 6:4835–4844, 2012.

    Article  CAS  PubMed  Google Scholar 

  9. Cho, E. C., J.-W. Kim, A. Fernandez-Nieves, and D. A. Weitz. Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles. Nano Lett. 8:168–172, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Chvatal, S. A., Y.-T. Kim, A. M. Bratt-Leal, H. Lee, and R. V. Bellamkonda. Spatial distribution and acute anti-inflammatory effects of methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials 29:1967–1975, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cometa, S., R. Iatta, M. A. Ricci, C. Ferretti, and E. De Giglio. Analytical characterization and antimicrobial properties of novel copper nanoparticle-loaded electrosynthesized hydrogel coatings. J. Bioact. Compat. Polym. 28:508–522, 2013.

    Article  CAS  Google Scholar 

  12. Conrado, R. J., J. D. Varner, and M. P. DeLisa. Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr. Opin. Biotechnol. 19:492–499, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Dang, T. T., A. V. Thai, J. Cohen, J. E. Slosberg, K. Siniakowicz, J. C. Doloff, M. Ma, J. Hollister-Lock, K. M. Tang, Z. Gu, H. Cheng, G. C. Weir, R. Langer, and D. G. Anderson. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 34:5792–5801, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davis, M. E., Z. Chen, and D. M. Shin. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7:771–782, 2008.

    Article  CAS  PubMed  Google Scholar 

  15. DeMuth, P. C., J. J. Moon, H. Suh, P. T. Hammond, and D. J. Irvine. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 6:8041–8051, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. DeMuth, P. C., X. Su, R. E. Samuel, P. T. Hammond, and D. J. Irvine. Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv. Mater. 22:4851–4856, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dvir, T., B. P. Timko, D. S. Kohane, and R. Langer. Nanotechnological strategies for engineering complex tissues. Nat. Nanotech. 6:13–22, 2011.

    Article  CAS  Google Scholar 

  18. Fairbanks, B. D., M. P. Schwartz, C. N. Bowman, and K. S. Anseth. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: Polymerization rate and cytocompatibility. Biomaterials 30:6702–6707, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang, R. H., B. T. Luk, C.-M. J. Hu, and L. Zhang. Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv. Drug Deliv. Rev. 90:69–80, 2015.

    Article  CAS  PubMed  Google Scholar 

  20. Fang, Y., C.-F. Wang, Z.-H. Zhang, H. Shao, and S. Chen. Robust self-healing hydrogels assisted by cross-linked nanofiber networks. Sci. Rep. 3: article number 2811, 2013.

  21. Fang, R. H., and L. Zhang. Combinatorial nanotherapeutics: rewiring, then killing, cancer cells. Sci. Signal. 7:pe13, 2014.

    Article  PubMed  CAS  Google Scholar 

  22. Farokhzad, O. C., and R. Langer. Impact of nanotechnology on drug delivery. ACS Nano 3:16–20, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Fraylich, M. R., R. Liu, S. M. Richardson, P. Baird, J. Hoyland, A. J. Freemont, C. Alexander, K. Shakesheff, F. Cellesi, and B. R. Saunders. Thermally-triggered gelation of PLGA dispersions: towards an injectable colloidal cell delivery system. J. Colloid Interface Sci. 344:61–69, 2010.

    Article  CAS  PubMed  Google Scholar 

  24. Fuhrer, R., E. K. Athanassiou, N. A. Luechinger, and W. J. Stark. Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small 5:383–388, 2009.

    Article  CAS  PubMed  Google Scholar 

  25. Fullenkamp, D. E., J. G. Rivera, Y.-K. Gong, K. H. A. Lau, L. He, R. Varshney, and P. B. Messersmith. Mussel-inspired silver-releasing antibacterial hydrogels. Biomaterials 33:3783–3791, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao, W., J. M. Chan, and O. C. Farokhzad. pH-responsive nanoparticles for drug delivery. Mol. Pharm. 7:1913–1920, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao, W., S. Thamphiwatana, P. Angsantikul, and L. Zhang. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6:532–547, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao, W., D. Vecchio, J. Li, J. Zhu, Q. Zhang, V. Fu, J. Li, S. Thamphiwatana, D. Lu, and L. Zhang. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano 8:2900–2907, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gobin, A. M., M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7:1929–1934, 2007.

    Article  CAS  PubMed  Google Scholar 

  30. Gordon, R. J., and F. D. Lowy. Pathogenesis of methicillin-resistant staphylococcus aureus infection. Clin. Infect. Dis. 46:S350–S359, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gorwitz, R. J. Understanding the success of methicillin-resistant staphylococcus aureus strains causing epidemic disease in the community. J. Infect. Dis. 197:179–182, 2008.

    Article  CAS  PubMed  Google Scholar 

  32. Gou, M., X. Qu, W. Zhu, M. Xiang, J. Yang, K. Zhang, Y. Wei, and S. Chen. Bio-inspired detoxification using 3d-printed hydrogel nanocomposites. Nat. Commun. 5: article number 3774, 2014.

  33. Grzelczak, M., J. Vermant, E. M. Furst, and L. M. Liz-Marzan. Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605, 2010.

    Article  CAS  PubMed  Google Scholar 

  34. Gu, Z., A. A. Aimetti, Q. Wang, T. T. Dang, Y. Zhang, O. Veiseh, H. Cheng, R. S. Langer, and D. G. Anderson. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 7:4194–4201, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gulsen, D., C. C. Li, and A. Chauhan. Dispersion of dmpc liposomes in contact lenses for ophthalmic drug delivery. Curr. Eye Res. 30:1071–1080, 2005.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta, P., K. Vermani, and S. Garg. Hydrogels: from controlled release to ph-responsive drug delivery. Drug Discov. Today 7:569–579, 2002.

    Article  CAS  PubMed  Google Scholar 

  37. Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 50:874–875, 1961.

    Article  CAS  PubMed  Google Scholar 

  38. Hoare, T. R., and D. S. Kohane. Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007, 2008.

    Article  CAS  Google Scholar 

  39. Hoshino, Y., H. Koide, K. Furuya, W. W. Haberaecker, III, S.-H. Lee, T. Kodama, H. Kanazawa, N. Oku, and K. J. Shea. The rational design of a synthetic polymer nanoparticle that neutralizes a toxic peptide in vivo. Proc. Natl. Acad. Sci. U. S. A. 109:33–38, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu, C.-M. J., R. H. Fang, J. Copp, B. T. Luk, and L. Zhang. A biomimetic nanosponge that absorbs pore-forming toxins. Nat. Nanotech. 8:336–340, 2013.

    Article  CAS  Google Scholar 

  41. Hu, C.-M. J., R. H. Fang, B. T. Luk, and L. Zhang. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotech. 8:933–938, 2013.

    Article  CAS  Google Scholar 

  42. Hu, C.-M. J., R. H. Fang, K.-C. Wang, B. T. Luk, S. Thamphiwatana, D. Dehaini, N. Phu, P. Angsantikul, C. H. Wen, A. V. Kroll, C. Carpenter, M. Ramesh, V. Qu, S. H. Patel, J. Zhu, W. Shi, F. M. Hofman, T. C. Chen, W. Gao, K. Zhang, S. Chien, and L. Zhang. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–121, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu, C.-M. J., L. Zhang, S. Aryal, C. Cheung, R. H. Fang, and L. Zhang. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U. S. A. 108:10980–10985, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huebsch, N., and D. J. Mooney. Inspiration and application in the evolution of biomaterials. Nature 462:426–432, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ilg, P. Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter 9:3465–3468, 2013.

    Article  CAS  Google Scholar 

  46. Jung, H. J., M. Abou-Jaoude, B. E. Carbia, C. Plummer, and A. Chauhan. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J. Control. Release 165:82–89, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Kapoor, Y., and A. Chauhan. Drug and surfactant transport in cyclosporine a and brij 98 laden p-hema hydrogels. J. Colloid Interface Sci. 322:624–633, 2008.

    Article  CAS  PubMed  Google Scholar 

  48. Kastrup, C. J., M. Nahrendorf, J. L. Figueiredo, H. Lee, S. Kambhampati, T. Lee, S.-W. Cho, R. Gorbatov, Y. Iwamoto, T. T. Dang, P. Dutta, J. H. Yeon, H. Cheng, C. D. Pritchard, A. J. Vegas, C. D. Siegel, S. MacDougall, M. Okonkwo, T. Anh, J. R. Stone, A. J. Coury, R. Weissleder, R. Langer, and D. G. Anderson. Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proc. Natl. Acad. Sci. U. S. A. 109:21444–21449, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ke, H., S. Jianfei, G. Zhaobin, W. Peng, C. Qiang, M. Ming, and G. Ning. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Adv. Mater. 27:2507–2514, 2015.

    Article  CAS  Google Scholar 

  50. Kolishetti, N., S. Dhar, P. M. Valencia, L. Q. Lin, R. Karnik, S. J. Lippard, R. Langer, and O. C. Farokhzad. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc. Natl. Acad. Sci. U. S. A. 107:17939–17944, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lang, N., N. Lang, M. J. Pereira, Y. Lee, I. Friehs, N. V. Vasilyev, E. N. Feins, K. Ablasser, E. D. O’Cearbhaill, C. Xu, A. Fabozzo, R. Padera, S. Wasserman, F. Freudenthal, L. S. Ferreira, R. Langer, J. M. Karp, and P. J. del Nido. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci. Transl. Med. 6:218ra216, 2014.

    Article  CAS  Google Scholar 

  52. Langer, R. Perspectives and challenges in tissue engineering and regenerative medicine. Adv. Mater. 21:3235–3236, 2009.

    Article  CAS  PubMed  Google Scholar 

  53. Laroui, H., G. Dalmasso, H. T. T. Nguyen, Y. Yan, S. V. Sitaraman, and D. Merlin. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology 138:843–853, 2010.

    Article  CAS  PubMed  Google Scholar 

  54. Li, F., D. P. Josephson, and A. Stein. Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50:360–388, 2011.

    Article  CAS  Google Scholar 

  55. Li, L., W. Smitthipong, and H. Zeng. Mussel-inspired hydrogels for biomedical and environmental applications. Polym. Chem. 6:353–358, 2015.

    Article  CAS  Google Scholar 

  56. Lin, C.-C., and A. T. Metters. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv. Drug Del. Rev. 58:1379–1408, 2006.

    Article  CAS  Google Scholar 

  57. Liu, Y., J. Du, M. Yan, M. Y. Lau, J. Hu, H. Han, O. O. Yang, S. Liang, W. Wei, H. Wang, J. Li, X. Zhu, L. Shi, W. Chen, C. Ji, and Y. Lu. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotech. 8:187–192, 2013.

    Article  CAS  Google Scholar 

  58. Liu, T.-Y., S.-H. Hu, K.-H. Liu, D.-M. Liu, and S.-Y. Chen. Study on controlled drug permeation of magnetic-sensitive ferrogels: effect of Fe3O4 and PVA. J. Control. Release 126:228–236, 2008.

    Article  CAS  PubMed  Google Scholar 

  59. Lobatto, M. E., V. Fuster, Z. A. Fayad, and W. J. M. Mulder. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat. Rev. Drug Discov. 10:835–852, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma, L., M. Kohli, and A. Smith. Nanoparticles for combination drug therapy. ACS Nano 7:9518–9525, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Merino, S., C. Martin, K. Kostarelos, M. Prato, and E. Vazquez. Nanocomposite hydrogels: 3d polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9:4686–4697, 2015.

    Article  CAS  PubMed  Google Scholar 

  62. Messing, R., N. Frickel, L. Belkoura, R. Strey, H. Rahn, S. Odenbach, and A. M. Schmidt. Cobalt ferrite nanoparticles as multifunctional cross-linkers in paam ferrohydrogels. Macromolecules 44:2990–2999, 2011.

    Article  CAS  Google Scholar 

  63. Mohan, Y. M., K. Lee, T. Premkumar, and K. E. Geckeler. Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164, 2007.

    Article  CAS  Google Scholar 

  64. Morton, S. W., M. J. Lee, Z. J. Deng, E. C. Dreaden, E. Siouve, K. E. Shopsowitz, N. J. Shah, M. B. Yaffe, and P. T. Hammond. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci. Signal. 7:ra44, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nel, A., T. Xia, L. Madler, and N. Li. Toxic potential of materials at the nanolevel. Science 311:622–627, 2006.

    Article  CAS  PubMed  Google Scholar 

  66. Ninh, C., M. Cramer, and C. J. Bettinger. Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers. Biomater. Sci. 2:766–774, 2014.

    Article  CAS  PubMed  Google Scholar 

  67. Park, C. G., C. Shasteen, Z. Amoozgar, J. Park, S.-N. Kim, J. E. Lee, M. J. Lee, Y. Suh, H. K. Seok, Y. Yeo, and Y. B. Choy. Photo-crosslinkable chitosan hydrogel as a bioadhesive for esophageal stents. Macromol. Res. 23:882–884, 2015.

    Article  CAS  Google Scholar 

  68. Patel, R. G., A. Purwada, L. Cerchietti, G. Inghirami, A. Melnick, A. K. Gaharwar, and A. Singh. Microscale bioadhesive hydrogel arrays for cell engineering applications. Cell. Mol. Bioeng. 7:394–408, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18:1345–1360, 2006.

    Article  CAS  Google Scholar 

  70. Petros, R. A., and J. M. DeSimone. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9:615–627, 2010.

    Article  CAS  PubMed  Google Scholar 

  71. Place, E. S., N. D. Evans, and M. M. Stevens. Complexity in biomaterials for tissue engineering. Nat. Mater. 8:457–470, 2009.

    Article  CAS  PubMed  Google Scholar 

  72. Qiu, Y., and K. Park. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53:321–339, 2001.

    Article  CAS  PubMed  Google Scholar 

  73. Qu, Y., B. Y. Chu, J. R. Peng, J. F. Liao, T. T. Qi, K. Shi, X. N. Zhang, Y. Q. Wei, and Z. Y. Qian. A biodegradable thermo-responsive hybrid hydrogel: Therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater. 7:e207, 2015.

    Article  CAS  Google Scholar 

  74. Ramer, L. M., M. S. Ramer, and J. D. Steeves. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord 43:134–161, 2005.

    Article  CAS  PubMed  Google Scholar 

  75. Ratner, B. D. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J. Control. Release 78:211–218, 2002.

    Article  CAS  PubMed  Google Scholar 

  76. Rattanaruengsrikul, V., N. Pimpha, and P. Supaphol. In vitro efficacy and toxicology evaluation of silver nanoparticle-loaded gelatin hydrogel pads as antibacterial wound dressings. J. Appl. Polym. Sci. 124:1668–1682, 2012.

    Article  CAS  Google Scholar 

  77. Romero, M. I., N. Rangappa, M. G. Garry, and G. M. Smith. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J. Neurosci. 21:8408–8416, 2001.

    CAS  PubMed  Google Scholar 

  78. Roux, R., C. Ladaviere, A. Montembault, and T. Delair. Particle assemblies: Toward new tools for regenerative medicine. Mater. Sci. Eng. C 33:997–1007, 2013.

    Article  CAS  Google Scholar 

  79. Saquing, C. D., J. L. Manasco, and S. A. Khan. Electrospun nanoparticle-nanofiber composites via a one-step synthesis. Small 5:944–951, 2009.

    Article  CAS  PubMed  Google Scholar 

  80. Satarkar, N. S., and J. Z. Hilt. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J. Control. Release 130:246–251, 2008.

    Article  CAS  PubMed  Google Scholar 

  81. Sattayasamitsathit, S., H. Kou, W. Gao, W. Thavarajah, K. Kaufmann, L. Zhang, and J. Wang. Fully loaded micromotors for combinatorial delivery and autonomous release of cargoes. Small 10:2830–2833, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schaefer-Korting, M., W. Mehnert, and H.-C. Korting. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev. 59:427–443, 2007.

    Article  CAS  Google Scholar 

  83. Schexnailder, P., and G. Schmidt. Nanocomposite polymer hydrogels. Colloid. Polym. Sci. 287:1–11, 2009.

    Article  CAS  Google Scholar 

  84. Schmaljohann, D. Thermo- and ph-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58:1655–1670, 2006.

    Article  CAS  PubMed  Google Scholar 

  85. Schmid-Wendtner, M. H., and H. C. Korting. The ph of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 19:296–302, 2006.

    Article  PubMed  Google Scholar 

  86. Schoffelen, S., and J. C. M. van Hest. Multi-enzyme systems: Bringing enzymes together in vitro. Soft Matter 8:1736–1746, 2012.

    Article  CAS  Google Scholar 

  87. Sekine, Y., Y. Moritani, T. Ikeda-Fukazawa, Y. Sasaki, and K. Akiyoshi. A hybrid hydrogel biomaterial by nanogel engineering: Bottom-up design with nanogel and liposome building blocks to develop a multidrug delivery system. Adv. Healthc. Mater. 1:722–728, 2012.

    Article  CAS  PubMed  Google Scholar 

  88. Sethi, M., R. Sukumar, S. Karve, M. E. Werner, E. C. Wang, D. T. Moore, S. R. Kowalczyk, L. Zhang, and A. Z. Wang. Effect of drug release kinetics on nanoparticle therapeutic efficacy and toxicity. Nanoscale 6:2321–2327, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shi, J., A. R. Votruba, O. C. Farokhzad, and R. Langer. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 10:3223–3230, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shi, J., Z. Xiao, N. Kamaly, and O. C. Farokhzad. Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Acc. Chem. Res. 44:1123–1134, 2011.

    Article  CAS  PubMed  Google Scholar 

  91. Siepmann, J., and N. A. Peppas. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (hpmc). Adv. Drug Deliv. Rev. 48:139–157, 2001.

    Article  CAS  PubMed  Google Scholar 

  92. Siepmann, J., and N. A. Peppas. Higuchi equation: derivation, applications, use and misuse. Int. J. Pharm. 418:6–12, 2011.

    Article  CAS  PubMed  Google Scholar 

  93. Singer, A. J., and D. A. Talan. Management of skin abscesses in the era of methicillin-resistant staphylococcus aureus. New Engl. J. Med. 370:1039–1047, 2014.

    Article  CAS  PubMed  Google Scholar 

  94. Thomas, V., M. M. Yallapu, B. Sreedhar, and S. K. Bajpai. Breathing-in/breathing-out approach to preparing nanosilver-loaded hydrogels: Highly efficient antibacterial nanocomposites. J. Appl. Polym. Sci. 111:934–944, 2009.

    CAS  Google Scholar 

  95. Timko, B. P., K. Whitehead, W. Gao, D. S. Kohane, O. Farokhzad, D. Anderson, and R. Langer. Advances in drug delivery. Annu. Rev. Mater. Res. 41:1–20, 2011.

    Article  CAS  Google Scholar 

  96. Wang, F., W. Gao, S. Thamphiwatana, B. T. Luk, P. Angsantikul, Q. Zhang, C.-M. J. Hu, R. H. Fang, J. A. Copp, D. Pornpattananangkul, W. Lu, and L. Zhang. Hydrogel retaining toxin-absorbing nanosponges for local treatment of methicillin-resistant staphylococcus aureus infection. Adv. Mater. 27:3437–3443, 2015.

    Article  CAS  PubMed  Google Scholar 

  97. Wang, Q., Z. Gu, S. Jamal, M. S. Detamore, and C. Berkland. Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering. Tissue Eng. Part A 19:2586–2593, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, H., M. B. Hansen, D. W. P. M. Loewik, J. C. M. van Hest, Y. Li, J. A. Jansen, and S. C. G. Leeuwenburgh. Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels. Adv. Mater. 23:H119–H124, 2011.

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Q., S. Jamal, M. S. Detamore, and C. Berkland. PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. J. Biomed. Mater. Res. A 96A:520–527, 2011.

    Article  CAS  Google Scholar 

  100. Wang, A. Z., R. Langer, and O. C. Farokhzad. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63:185–198, 2012.

    Article  CAS  PubMed  Google Scholar 

  101. Wang, Y., B. Li, Y. Zhou, Z. Han, Y. Feng, and D. Wei. A facile concentric-layered magnetic chitosan hydrogel with magnetic field remote stimulated drug release. J. Control. Release 172:E90, 2013.

    Article  Google Scholar 

  102. Wang, Q., L. Wang, M. S. Detamore, and C. Berkland. Biodegradable colloidal gels as moldable tissue engineering scaffolds. Adv. Mater. 20:236–239, 2008.

    Article  CAS  Google Scholar 

  103. Wang, S., Y. Zhao, M. Shen, and X. Shi. Electrospun hybrid nanofibers doped with nanoparticles or nanotubes for biomedical applications. Ther. Deliv. 3:1155–1169, 2012.

    Article  CAS  PubMed  Google Scholar 

  104. Wu, Z., B. E.-F. de Avila, A. Martin, C. Christianson, W. Gao, S. K. Thamphiwatana, A. Escarpa, Q. He, L. Zhang, and J. Wang. RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale 7:13680–13686, 2015.

    Article  CAS  PubMed  Google Scholar 

  105. Xia, L.-W., R. Xie, X.-J. Ju, W. Wang, Q. Chen, and L.-Y. Chu. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 4: article number 2226, 2013.

  106. Xiang, Y., and D. Chen. Preparation of a novel ph-responsive silver nanoparticle/poly (HEMA-PEGMA-MAA) composite hydrogel. Eur. Polym. J. 43:4178–4187, 2007.

    Article  CAS  Google Scholar 

  107. Yan, B., J.-C. Boyer, D. Habault, N. R. Branda, and Y. Zhao. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134:16558–16561, 2012.

    Article  CAS  PubMed  Google Scholar 

  108. Yoon, Y. M., J. S. Lewis, M. R. Carstens, M. Campbell-Thompson, C. H. Wasserfall, M. A. Atkinson, and B. G. Keselowsky. A combination hydrogel microparticle-based vaccine prevents type 1 diabetes in non-obese diabetic mice. Sci. Rep. 5:13155, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu, L., and J. Ding. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 37:1473–1481, 2008.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, L., Z. Cao, T. Bai, L. Carr, J.-R. Ella-Menye, C. Irvin, B. D. Ratner, and S. Jiang. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31:553–556, 2013.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, L., and J.-C. Leroux. Current and forthcoming approaches for systemic detoxification preface. Adv. Drug Deliv. Rev. 90:1–2, 2015.

    Article  PubMed  CAS  Google Scholar 

  112. Zhang, J., Y. Li, X. Zhang, and B. Yang. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 22:4249–4269, 2010.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, X., C. L. Pint, M. H. Lee, B. E. Schubert, A. Jamshidi, K. Takei, H. Ko, A. Gillies, R. Bardhan, J. J. Urban, M. Wu, R. Fearing, and A. Javey. Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett. 11:3239–3244, 2011.

    Article  CAS  PubMed  Google Scholar 

  114. Zhao, X. L., X. B. Ding, Z. H. Deng, Z. H. Zheng, Y. X. Peng, C. R. Tian, and X. P. Long. A kind of smart gold nanoparticle-hydrogel composite with tunable thermo-switchable electrical properties. New J. Chem. 30:915–920, 2006.

    Article  CAS  Google Scholar 

  115. Zhao, X., J. Kim, C. A. Cezar, N. Huebsch, K. Lee, K. Bouhadir, and D. J. Mooney. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. U. S. A. 108:67–72, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhu, W., Y. Li, L. Liu, Y. Chen, C. Wang, and F. Xi. Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and alpha-cyclodextrins with a stepwise delivery property. Biomacromolecules 11:3086–3092, 2010.

    Article  CAS  PubMed  Google Scholar 

  117. Zhu, C.-H., Y. Lu, J. Peng, J.-F. Chen, and S.-H. Yu. Photothermally sensitive poly(n-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv. Funct. Mater. 22:4017–4022, 2012.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Science Foundation Grant DMR-1505699 and the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under Award Number R01DK095168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangfang Zhang.

Additional information

Associate Editor Akhilesh K Gaharwar oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Zhang, Y., Zhang, Q. et al. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery. Ann Biomed Eng 44, 2049–2061 (2016). https://doi.org/10.1007/s10439-016-1583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1583-9

Keywords

Navigation