Skip to main content
Log in

Characterization of rheological properties of complex coacervates composed by whey protein isolate, chitosan and garlic essential oil

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This work aims to study the effect of incorporation of garlic essential oil (GEO) with loading of 10% (GEO-10) and 20% (GEO-20) on the strength and stability of polyelectrolyte complex coacervate obtained by electrostatic interactions between chitosan (CH) and whey protein isolate (WPI) with positive and negative charges, respectively. Rheological studies were applied to investigate the viscosity and viscoelastic properties of complex coacervates. The viscoelastic properties were investigated by dynamic oscillatory tests and static tests (creep and recovery). The coacervates exhibited the shear-thinning behavior of non-Newtonian fluid, and the frequency sweep test revealed magnitude of elastic modulus (G′) higher than loss modulus (G″) at high frequency due to the formation of compact network structure with elastic dominant property (solid-like behavior). Arrhenius model was able to estimate the relationship between viscosity and temperature, and the high temperature caused molecular expansion and increase in intermolecular distances, leading to decrease on the viscosity. The energy of activation (Ea) was 25.24 and 20.74 kJ mol−1 for WPI/GEO-10/CH and WPI/GEO-20/CH, respectively. The highest Ea value for WPI/GEO-10/CH indicated the formation of more strength and structured network matrices for GEO protection. Creep and recovery data were well fitted by Burger model and exponential decay function, respectively, and obtaining R2 higher than 0.98. The percentage recovery (%R) was 16.67% and 9.52% for WPI/GEO-10/CH and WPI/GEO-20/CH, respectively, indicating that WPI/GEO-10/CH had greater capacity for structural recovery and the most suitable to be applied in food product that industrially requires large stress, high temperature and long-time processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Tavares, L. Santos, C.P. Zapata Noreña, Trends Food Sci. Technol. 114, 232 (2021)

    Article  CAS  Google Scholar 

  2. L. Tavares, L. Santos, C.P.Z. Noreña, Powder Technol. 390, 103 (2021)

    Article  CAS  Google Scholar 

  3. C.T. Ho, J. Li, M.C. Kuo, in Flavor Chemistry of Ethnic Foods. ed. by F. Shahidi, C.T. Ho (Springer, Boston, 1999), pp. 55–76

    Chapter  Google Scholar 

  4. S.G. Santhosha, P. Jamuna, S.N. Prabhavathi, Food Biosci. 3, 59 (2013)

    Article  CAS  Google Scholar 

  5. M. Corzo-Martínez, N. Corzo, M. Villamiel, Trends Food Sci. Technol. 18, 609 (2007)

    Article  Google Scholar 

  6. N. Ozdemir, A. Bayrak, T. Tat, F. Altay, M. Kiralan, A. Kurt, J. Food Meas. Charact. 15, 1865–1876 (2021)

    Article  Google Scholar 

  7. S. Rojas-Moreno, F. Cárdenas-Bailón, G. Osorio-Revilla, T. Gallardo-Velázquez, J. Proal-Nájera, J. Food Meas. Charact. 12, 650–660 (2018)

    Article  Google Scholar 

  8. M. Lengyel, N. Kállai-Szabó, V. Antal, A.J. Laki, I. Antal, Sci. Pharm. 87, 20 (2019)

    Article  CAS  Google Scholar 

  9. M.A. Rao, in Rheology of Fluid, Semisolid, and Solid Foods: Principles and Applications. ed. by M.A. Rao (Springer, Boston, 2014), pp. 27–61

    Chapter  Google Scholar 

  10. J.F. Steffe, Rheological Methods in Food Process Engineering (Freeman Press, New York, 1996)

    Google Scholar 

  11. C. Wandrey, A. Bartkowiak, S.E. Harding, in Encapsulation Technologies for Active Food Ingredients and Food Processing. ed. by N.J. Zuidam, V. Nedovic (Springer, New York, 2010), pp. 31–100

    Chapter  Google Scholar 

  12. H. Dogan, J.L. Kokini, Batters and Breadings in Food Processing (AACC International Press, Washington, 2011), pp. 263–299

    Book  Google Scholar 

  13. A. Ibarz, G.V. Barbosa-Cánovas, Unit Operations in Food Engineering (CRC Press, Boca Raton, 2002)

    Book  Google Scholar 

  14. L. Tavares, H.L.B. Barros, J.C.P. Vaghetti, C.P.Z. Noreña, Food Bioprocess Technol. 12, 2093 (2019)

    Article  CAS  Google Scholar 

  15. L. Tavares, C.P.Z. Noreña, Food Hydrocoll. 89, 360 (2019)

    Article  CAS  Google Scholar 

  16. L.H. Wang, X. Sun, G.Q. Huang, J.X. Xiao, J. Food Meas. Charact. 12, 2718–2724 (2018)

    Article  Google Scholar 

  17. F.L. Yang, X.-G. Li, F. Zhu, C.L. Lei, J. Agric. Food Chem. 57, 10156 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. C. Valcourt, P. Saulnier, A. Umerska, M.P. Zanelli, A. Montagu, E. Rossines, M.L. Joly-Guillou, Int. J. Pharm. 498, 23 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. N. Parris, P.H. Cooke, K.B. Hicks, Encapsulation of essential oils in zein nanospherical particles. J Agric Food Chem. 53, 4788 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Y.I. Chang, J. Scire, B. Jacobs, Flavor Encapsulation (American Chemical Society, Washington, 1988), pp. 87–102

    Book  Google Scholar 

  21. L.P. Fernandes, I.C.C. Turatti, N.P. Lopes, J.C. Ferreira, R.C. Candido, W.P. Oliveira, Dry. Technol. 26, 1534 (2008)

    Article  CAS  Google Scholar 

  22. L. Tavares, C.P.Z. Noreña, Food Bioprocess Technol. 13, 1405 (2020)

    Article  CAS  Google Scholar 

  23. J. Steffe, Introduction to rheology. Rheol. Methods Food Process. Eng. 2, 1 (1996)

    Google Scholar 

  24. K. Yasuda, Massachusetts Institute of Technology, 1979.

  25. Y. Zare, S.P. Park, K.Y. Rhee, Results Phys. 13, 102245 (2019)

    Article  Google Scholar 

  26. V.S. Kulkarni, C. Shaw, Rheological studies, in Essential Chemistry for Formulators of Semisolid and Liquid Dosages. ed. by V.S. Kulkarni, C. Shaw (Academic Press, Boston, 2016), pp. 145–182

    Chapter  Google Scholar 

  27. S. Karaman, M.T. Yilmaz, H. Cankurt, A. Kayacier, O. Sagdic, Food Res. Int. 48, 507 (2012)

    Article  CAS  Google Scholar 

  28. M.T. Yilmaz, S. Karaman, M. Dogan, H. Yetim, A. Kayacier, J. Food Eng. 108, 327 (2012)

    Article  Google Scholar 

  29. A.K. Sharma, A.K. Tiwari, A.R. Dixit, Sust. Energ. Rev. 53, 779 (2016)

    Article  CAS  Google Scholar 

  30. Y. Liu, H.H. Winter, S.L. Perry, Adv. Colloid Interface Sci. 239, 46–60 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. W. Rosas-Flores, E.G. Ramos-Ramírez, J.A. Salazar-Montoya, Carbohydr. Polym. 98, 1011 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. H. Gong, M. Liu, J. Chen, F. Han, C. Gao, B. Zhang, Carbohydr. Polym. 88, 1015 (2012)

    Article  CAS  Google Scholar 

  33. Y. Wei, Y. Guo, R. Li, A. Ma, H. Zhang, Food Hydrocoll. 110, 106198 (2021)

    Article  CAS  Google Scholar 

  34. G. You, X.L. Liu, M.M. Zhao, Food Hydrocoll. 74, 255–266 (2018)

    Article  CAS  Google Scholar 

  35. M. Fathi, Z. Emam-Djomeh, A. Sadeghi-Varkani, Int. J. Biol. Macromol. 120, 1265–1274 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. M.G. Bordón, A.J. Paredes, N.M. Camacho, M.C. Penci, A. González, S.D. Palma, P.D. Ribotta, M.L. Martinez, Powder Technol. 391, 479–493 (2021)

    Article  Google Scholar 

  37. Q. Xiao, Q. Tong, L.T. Lim, Carbohydr. Polym. 87, 1689 (2012)

    Article  CAS  Google Scholar 

  38. H. Toǧrul, N. Arslan, Mathematical model for prediction of apparent viscosity of molasses. J. Food Eng. 62, 281 (2004)

    Article  Google Scholar 

  39. L. Zhang, Z. Liu, X. Han, Y. Sun, X. Wang, Int. J. Biol. Macromol. 134, 807–814 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. A.L. Muñoz-Celaya, M. Ortiz-García, E.J. Vernon-Carter, J. Jauregui-Rincón, E. Galindo, L. Serrano-Carreón, Carbohydr. Polym. 88, 1141 (2012)

    Article  Google Scholar 

  41. M. Chaharlang, V. Samavati, Int. J. Biol. Macromol. 79, 56 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. Y. Yang, X. Liu, Y. Xue, C. Xue, Y. Zhao, Food Hydrocoll. 98, 105260 (2020)

    Article  CAS  Google Scholar 

  43. L. Tavares, E.E. EsparzaFlores, R.C. Rodrigues, P.F. Hertz, C.P.Z. Noreña, Food Hydrocoll. 106, 105876 (2020)

    Article  CAS  Google Scholar 

  44. Y. Yuan, Z.Y. Kong, Y.E. Sun, Q.Z. Zeng, X.Q. Yang, LWT 75, 171–179 (2017)

    Article  CAS  Google Scholar 

  45. L. Wang, H.M. Liu, C.Y. Zhu, A.J. Xie, B.J. Ma, P.Z. Zhang, Carbohydr. Polym. 209, 230 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. A. Rafe, S.M.A. Razavi, Food Hydrocoll. 62, 58–65 (2017)

    Article  CAS  Google Scholar 

  47. Y. Zare, K.Y. Rhee, Compos. B 156, 100 (2019)

    Article  CAS  Google Scholar 

  48. M.A. Hesarinejad, A. Koocheki, S.M.A. Razavi, Food Hydrocoll. 35, 583 (2014)

    Article  CAS  Google Scholar 

  49. C.M.R. Rocha, H.K.S. Souza, N.F. Magalhães, C.T. Andrade, M.P. Gonçalves, Carbohydr. Polym. 110, 345 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. M.V. Chandra, B.A. Shamasundar, Food Hydrocoll. 48, 47 (2015)

    Article  CAS  Google Scholar 

  51. M. Dolz, M.J. Hernández, J. Delegido, Food Hydrocoll. 22, 421 (2008)

    Article  CAS  Google Scholar 

  52. J. Huang, S. Zeng, S. Xiong, Q. Huang, Food Hydrocoll. 61, 48 (2016)

    Article  CAS  Google Scholar 

  53. M.G. de Alcântara, N. de FreitasOrtega, C.J.F. Souza, E.E. Garcia-Rojas, Food Struct. 24, 100137 (2020)

    Article  Google Scholar 

  54. Y.Y. Chang, D. Li, L.J. Wang, C.H. Bi, B. Adhikari, Carbohydr. Polym. 108, 183 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. J.M. Parot, B. Duperray, Mech. Mater. 40, 575 (2008)

    Article  Google Scholar 

  56. M. Cabuk, M. Yavuz, H.I. Unal, Colloids Surf. A 510, 231–238 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided from FAPERGS and CNPq. We thank the Primex (Siglufjordur, Iceland) and Arla Foods Ingredients for donating chitosan and whey proteins isolates, respectively. Loleny Tavares also thanks CAPES/CNPq-Programa Estudantes-Convênio de Pós-Graduação (PEC-PG) for scholarship funding.

Funding

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 306489/2018-0), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (Grant No. 17/2551-0000915-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caciano Pelayo Zapata Noreña.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, L., Noreña, C.P.Z. Characterization of rheological properties of complex coacervates composed by whey protein isolate, chitosan and garlic essential oil. Food Measure 16, 295–306 (2022). https://doi.org/10.1007/s11694-021-01162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01162-8

Keywords

Navigation