Skip to main content
Log in

Anthocyanin fingerprinting and dynamics in differentially pigmented exotic soybean genotypes using modified HPLC–DAD method

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

More than as a phenotypic marker for breeding, seed coat colour of soybean is gaining momentum as a nutraceutical marker owing to the multitude of medicinal effects provided by anthocyanins. The acute obstacle for large scale phenotyping is a rapid, reliable and accurate quantification which simultaneously determines various anthocyanins and hence, in this study, the modified method efficiently separated cyanidin-3-glucoside (C3G), delphinidin-3-glucoside (D3G) and petunidin-3-glucoside (Pt3G) forms by eluting through a RP-C18 column with an optimized isocratic mobile phase containing 18% solvent B (0.4% trifluoro acetic acid in acetonitrile) in solvent A (0.4% trifluoro acetic acid in water). The elution profile of anthocyanins were C3G > D3G > Pt3G, with C3G as the predominant (~ 85%) form. The modified method was validated in terms of linearity (R2 = 0.998), low limit of detection (LOD = 5.8 μg ml−1), limit of quantification (LOQ = 22.25 μg ml−1), precision, repeatability, stability and recovery. C3G dynamics was found increased in a linear trend from 30DAF to later developing stages until maturity. The investigation on characterization of exotic soybean genotypes revealed that, maximum C3G content of 4.9 mg g−1 was in UPSL496 and the least in EC471921 (3.56 mg g−1). There was a positive correlation observed among all the variables, like monomeric anthocyanin content (MAC), C3G, D3G and Pt3G. Clustering and heat map analysis information on this efficient method can be used for future research for germ plasm evaluation and for developing nutritionally C3G enriched high yielding varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Satue-Gracia, I.M. Heinonen, E.N. Frankel, J. Agric. Food Chem. 45, 3362–3367 (1997)

    Article  CAS  Google Scholar 

  2. S.H. Nam, S.P. Choi, M.Y. Kang, H.J. Koh, N. Kozukue, M. Friedman, Food Chem. 94, 613–620 (2006)

    Article  CAS  Google Scholar 

  3. S. Kumari, M. Jolly, V. Krishnan, A. Dahuja, A. Sachdev, Afr. J. Biotechnol. 11, 16443–164544 (2012)

    CAS  Google Scholar 

  4. V. Krishnan, S. Gothwal, A. Dahuja, T. Vinutha, B. Singh, M. Jolly, A. Sachdev, Food Chem. 245, 246–253 (2018)

    Article  CAS  Google Scholar 

  5. R.L. Bernard, M.G. Weiss, Qualitative genetics. Soybeans improvement, production, and uses. In: Caldwell BE, editor. Agronomy Monograph. Vol. 16. American Society of Agronomy; Madison, 117–154p (1973).

  6. J.J. Todd, L.O. Vodkin, Plant Physiol. 102, 663–670 (1993)

    Article  CAS  Google Scholar 

  7. V. Krishnan, A. Singh, V. Thimmegowda, B. Singh, D. Anil, D.R. Raj, S. Archana, J. Radioanal. Nucl. Chem. 307, 49 (2016)

    Article  CAS  Google Scholar 

  8. J.M. Kong, L.S. Chia, N.K. Goh, T.F. Chia, R. Brouillard, Phytochemistry 64, 923–933 (2003)

    Article  CAS  Google Scholar 

  9. M. Takikawa, S. Inoue, F. Horio, T. Tsuda, J. Nutr. 140, 527–533 (2010)

    Article  CAS  Google Scholar 

  10. H. Kamei, Y. Hashimoto, T. Koide, T. Kojima, M. Hasegawa, Cancer Biother. Radiopharm. 13, 447–452 (1998)

    Article  CAS  Google Scholar 

  11. I. Nagai, Tokyo Univ. Coll. Agric. J. 8, 1–92 (1921)

    CAS  Google Scholar 

  12. C. Kuroda, M. Wada, Proc. Jpn. Acad. 9, 17 (1933)

    Article  CAS  Google Scholar 

  13. T. Manabe, S. Kubo, M. Kodama, Y. Bessho, Nippon Shokuhin Kogyo Gakkaish 12, 472 (1965)

    Article  CAS  Google Scholar 

  14. K. Yoshikura, Y. Hamaguchi, J. Jpn. Soc. Food Sci. 22, 367 (1969)

    CAS  Google Scholar 

  15. K. Yoshida, Y. Sato, R. Okuno, K. Kameda, M. Isobe, T. Kondo, Biosci. Biotechnol. Biochem. 60, 589–593 (1996)

    Article  CAS  Google Scholar 

  16. M. Choung, B.I. Youl, S. Kang, W. Han, D. Shin, H. Moon, K. Kang, J. Agric. Food Chem. 49, 5848–5851 (2001)

    Article  CAS  Google Scholar 

  17. G. Mazza, L. Gao, Blue and purple grains. In: Abdel-Aal E-SM, Peter PJ, editors. Specialty Grains for Food and Feed. St. Paul: American Association of Cereal Chemists, 45–67 (2005).

  18. K. Koh, J. Youn, H. Kim, J. Food Sci. Technol. 51, 377–381 (2014)

    Article  CAS  Google Scholar 

  19. K.J. Lee, J.R. Lee, K.H. Ma, Y.H. Cho, G.A. Lee, J.W. Chung, Plant Breed. Biotech. 4, 441–452 (2016)

    Google Scholar 

  20. B.H. Taylor, M.S. Thesis, University of Arkansas, Fayetteville, AR (1976).

  21. S. Abdel, J.C. Young, I. Rabalski, J. Agric. Food Chem. 54, 4696–4704 (2006)

    Article  Google Scholar 

  22. V. Pandey, V. Krishnan, N. Basak, A. Hada, M. Punjabi, M. Jolly, S.K. Lal, S.B. Singh, A. Sachdev, J. Plant Biochem. Biotechnol. 25, 367–374 (2016)

    Article  CAS  Google Scholar 

  23. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).

  24. L. Longo, G. Vasapollo, L. Rescio, J. Agric. Food Chem. 53, 1723–1727 (2005)

    Article  CAS  Google Scholar 

  25. J. Sang, Q. Ma, C. Li, Anal. Methods 9, 2535–2545 (2017)

    Article  CAS  Google Scholar 

  26. A. Castaneda-Ovando, M.L. Pacheo-Hernandez, E. Paez-Hernandez, J. Rodriguez, C. Galan-Vidal, Food Chem. 113, 859–871 (2009)

    Article  CAS  Google Scholar 

  27. J.M. Awika, L.W. Rooney, R.D. Waniska, Food Chem. 90, 293–301 (2005)

    Article  CAS  Google Scholar 

  28. K. Yoshida, D. Ma, C.P. Constabel, Plant Physiol. 167, 693–710 (2015)

    Article  CAS  Google Scholar 

  29. E.H. Kim, H.M. Ro, S.L. Kim, H.S. Kim, I.M. Chung, J. Agric. Food Chem. 60, 6045–6055 (2012)

    Article  CAS  Google Scholar 

  30. Y. Kim, H. Yoon, Y. Lee, D. Youn, T. Ha, H. Kim, J. Lee, Biomol. Ther. 20, 68–74 (2012)

    Article  CAS  Google Scholar 

  31. L. Zhang, Q. Fu, Y. Zhang, Food Chem. 127, 1444–1449 (2011)

    Article  CAS  Google Scholar 

  32. V. Reddy, K. Goud, R. Sharma, A. Reddy, Plant Physiol. 105, 1059–1066 (1994)

    Article  CAS  Google Scholar 

  33. S.N. Ryu, S.Z. Park, C.T. Ho, J. Food Drug Anal. 6, 729–736 (1998)

    CAS  Google Scholar 

  34. N. Kovinich, A. Saleem, J.T. Arnason, B. Miki, BMC Genomics 12, 381 (2011)

    Article  CAS  Google Scholar 

  35. A. Kasai, M. Watarai, S. Yumoto, S. Akada, R. Ishikawa, T. Harada, M. Niizeki, M. Senda, Breed. Sci. 54, 355–360 (2004)

    Article  CAS  Google Scholar 

  36. S. Phommalath, M. Teraishi, T. Yoshikawa, H. Saito, T. Tsukiyama, T. Nakazaki, T. Tanisaka, Y. Okumoto, Breed. Sci. 64, 409–415 (2014)

    Article  CAS  Google Scholar 

  37. Q. Wang, M. Xia, C. Liu, H. Guo, Q. Ye, Y. Hu, Y. Zhang, M. Hou, H. Zhu, J. Ma, W. Ling, Life Sci. 83, 176–184 (2008)

    Article  CAS  Google Scholar 

  38. Z. Liu, M. Shi, D. Xie, Planta 239, 765 (2014)

    Article  CAS  Google Scholar 

  39. S.Y. Park, S. Pak, S.J. Kang, N.Y. Kim, D.S. Kim, J.M. Kim, S.A. Kim, J.Y. Kim, S.Y. Park, S.H. Park, C.R. Youn, B.R. Lee, H.E. Lee, S.Y. Choi, H.W. Choi, J.Y. Heo, Y.A. Hwang, M.S. Lee, J. Nutr. Health Aging 48, 299–309 (2015)

    Article  CAS  Google Scholar 

  40. S. Kumar, V. Krishnan, J. Phytochem. Biochem 1, 103 (2017)

    Google Scholar 

  41. M. Schwartz, B. Venables, gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1.2. https://CRAN.R-project.org/package=gplots (2020).

Download references

Acknowledgements

The authors are grateful to National Bureau of Plant Genetic Resources (NBPGR), New Delhi for procuring the exotic collections of black soybean. This research was supported by ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veda Krishnan or Archana Sachdev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, V., Rani, R., Pushkar, S. et al. Anthocyanin fingerprinting and dynamics in differentially pigmented exotic soybean genotypes using modified HPLC–DAD method. Food Measure 14, 1966–1975 (2020). https://doi.org/10.1007/s11694-020-00443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00443-y

Keywords

Navigation