Skip to main content
Log in

Rheological characterization of konjac glucomannan in concentrated solutions

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Dynamic viscoelasticity measurements were performed for concentrated solutions of konjac glucomannan in an ionic liquid. The entanglement coupling appeared in the rheological data for each solution was characterized in terms of the molecular weight between entanglements (M e) as an average size of the transient entanglement network. The value of M e for konjac glucomannan in the molten state was estimated to be 1.8 × 103 (in g mol−1), being significantly smaller than that for cellulose, although the molecular weight and linkage of the repeating units were the same between these polysaccharides. This result suggested that the configuration of the repeating monosaccharide unit affected the entanglement network of these polysaccharides reflecting the single chain characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Kobayashi, S. Tsujihata, T. Hibi, Y. Tsukamoto, Preparation and rheological characterization of carboxymethyl konjac glucomannan. Food Hydrocoll. 16, 289–294 (2002)

    Article  CAS  Google Scholar 

  2. C.F. Mao, W. Klinthong, Y.C. Zeng, C.H. Chen, On the interaction between konjac glucomannan and xanthan in mixed gels: an analysis based on the cascade model. Carbohydr. Polym. 89, 98–103 (2012)

    Article  CAS  Google Scholar 

  3. K. Nishinari, E. Miyoshi, T. Takaya, P.A. Williams, Rheological an DSC studies on the interaction between gellan gum and konjac glucomannan. Carbohydr. Polym. 30, 193–207 (1996)

    Article  CAS  Google Scholar 

  4. H. Zhang, M. Yoshimura, K. Nishinari, M.A.K. Williams, T.J. Foster, I.T. Norton, Gelation behavior of konjac glucomannan with different molecular weights. Biopolymers 59, 38–50 (2001)

    Article  CAS  Google Scholar 

  5. M.S. Koek, A.S. Abdelhameed, S. Ang, G.A. Morris, S.E. Harding, A novel global hydrodynamic analysis of the molecular flexibility of the dietary fibre polysaccharide konjac glucomannan. Food Hydrocoll. 23, 1910–1917 (2009)

    Article  Google Scholar 

  6. B. Li, B.J. Xie, Single molecular chain geometry of konjac glucomannan as a high quality dietary fiber in East Asia. Food Res. Int. 39, 127–132 (2006)

    Article  CAS  Google Scholar 

  7. Y. Lu, L. Zhang, X. Zhang, Y. Zhou, Effects of secondary structure on miscibility and properties of semi-IPN from polyurethane and benzyl konjac glucomannan. Polymer 44, 6689–6696 (2003)

    Article  CAS  Google Scholar 

  8. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986)

    Google Scholar 

  9. J.D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980)

    Google Scholar 

  10. X. Chen, Y. Zhang, F. Ke, J. Zhou, H. Wang, D. Liang, Solubility of neutral and charged polymers in ionic liquids studies by laser light scattering. Polymer 52, 481–488 (2011)

    Article  CAS  Google Scholar 

  11. K. Kato, K. Matsuda, Studies of the chemical structure of konjac glucomannan: I. Isolation and characterization of oligosaccharides from the partial hydroyzate of the mannan. Agric. Biol. Chem. 33, 1446–1453 (1969)

    CAS  Google Scholar 

  12. J. Horinaka, Y. Urabayashi, T. Takigawa, M. Ohmae, Entanglement network of chitin and chitosan in ionic liquid solutions. J. Appl. Polym. Sci. 130, 2439–2443 (2013)

    Article  CAS  Google Scholar 

  13. J. Horinaka, R. Yasuda, T. Takigawa, Entanglement properties of cellulose and amylose in an ionic liquid. J. Polym. Sci. B Polym. Phys. 49, 961–965 (2011)

    Article  CAS  Google Scholar 

  14. S. Onogi, T. Masuda, K. Kitagawa, Rheological properties of anionic polystyrenes. I. Dynamic viscoelasticity of narrow-distribution polystyrenes. Macromolecules 3, 109–116 (1970)

    Article  CAS  Google Scholar 

  15. S.J. Dalsin, M.A. Hillmyer, F.S. Bates, Linear rheology of polyolefin-based bottlebrush polymers. Macromolecules 48, 4680–4691 (2015)

    Article  CAS  Google Scholar 

  16. Q. Chen, H. Masser, H.S. Shiau, S. Liang, J. Runt, P.C. Painter, R.H. Colby, Linear viscoelasticity and Fourier Transform infrared spectroscopy of polyether-ester-sulfonated copolymer ionomers. Macromolecules 47, 3635–3644 (2014)

    Article  CAS  Google Scholar 

  17. F.B. Khorasani, R. Poling-Skutvik, R. Krishnamoorti, J.C. Conrad, Mobility of nanoparticles in semidilute polyelectrolyte solutions. Macromolecules 47, 5328–5333 (2014)

    Article  CAS  Google Scholar 

  18. R.H. Colby, Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol. Acta 49, 425–442 (2010)

    Article  CAS  Google Scholar 

  19. T. Masuda, N. Toda, Y. Aoto, S. Onogi, Viscoelastic properties of concentrated solutions of poly(methyl methacrylate) in diethyl phthalate. Polym. J. 3, 315–321 (1972)

    Article  CAS  Google Scholar 

  20. N. Nemoto, T. Ogawa, H. Odani, M. Kurata, Shear creep studies of narrow-distribution poly(cis-isoprene). III. Concentrated solutions. Macromolecules 5, 641–644 (1972)

    Article  CAS  Google Scholar 

  21. K. Werner, L. Pommer, M. Broström, Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis 110, 130–137 (2014)

    Article  CAS  Google Scholar 

  22. S.J. Park, P.S. Desai, X. Chen, R.G. Larson, Universal relaxation behavior of entangled 1,4-polybutadiene melts in the transition frequency region. Macromolecules 48, 4122–4131 (2015)

    Article  CAS  Google Scholar 

  23. A. Shabbir, H. Goldansaz, O. Hassager, E. van Ruymbeke, N.J. Alvarez, Effect of hydrogen bonding on linear and nonlinear rheology of entangled polymer melts. Macromolecules 48, 5988–5996 (2015)

    Article  CAS  Google Scholar 

  24. K. Maekaji, Relationship between stress relaxation and syneresis of konjac glucomannan gel. Agric. Biol. Chem. 42, 177–178 (1978)

    CAS  Google Scholar 

  25. W.W. Graessley, S.F. Edwards, Entanglement interactions in polymers and the chain contour concentration. Polymer 22, 1329–1334 (1981)

    Article  CAS  Google Scholar 

  26. J. Horinaka, A. Okuda, R. Yasuda, T. Takigawa, Molecular weight between entanglements for linear d-glucans. Colloid Polym. Sci. 290, 1793–1797 (2012)

    Article  CAS  Google Scholar 

  27. S. Wu, Chain structure and entanglement. J. Polym. Sci. B Polym. Phys. 27, 723–741 (1989)

    Article  CAS  Google Scholar 

  28. L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27, 4639–4647 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Horinaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horinaka, Ji., Okamoto, A. & Takigawa, T. Rheological characterization of konjac glucomannan in concentrated solutions. Food Measure 10, 220–225 (2016). https://doi.org/10.1007/s11694-015-9296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-015-9296-6

Keywords

Navigation