Skip to main content

Chitin: Structure, Chemistry and Biology

  • Chapter
  • First Online:
Targeting Chitin-containing Organisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1142))

Abstract

Chitin is a linear polysaccharide of the amino sugar N-acetyl glucosamine. It is present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes and arthropods and fungi. Generally, it is an important component of protective or supportive extracellular matrices that cover the tissue that produces it or the whole body of the organism. Chitin fibres associate with each other adopting one of three possible crystalline organisations, i.e. α-, β- or γ-chitin. Usually, chitin fibre bundles interact with chitin-binding proteins forming higher order structures. Chitin laminae, which are two-dimensional sheets of α-chitin crystals with antiparallel running chitin fibres in association with β-folded proteins, are primary constituents of the arthropod cuticle and the fibrous extracellular matrix in sponges. A tri-dimensional composite material of proteins coacervates and β-chitin constitute hard biomaterials such as the squid beak. The molecular composition of γ-chitin-based structures that contribute to the physical barrier found in insect cocoons is less well studied. In principle, chitin is a versatile extracellular polysaccharide that in association with proteins defines the mechanical properties of tissues and organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW (2005) The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14(5):453–463

    Article  CAS  Google Scholar 

  • Arakane Y, Specht CA, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 38(10):959–962

    Article  CAS  Google Scholar 

  • Araujo SJ, Aslam H, Tear G, Casanova J (2005) Mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development–analysis of its role in Drosophila tracheal morphogenesis. Dev Biol 288(1):179–193

    Article  CAS  Google Scholar 

  • Berlese A (1909) Gli insetti – loro organizzazione, sviluppo, abitudini e rapporti coll’uomo. Milano, Società Editrice Libreria

    Book  Google Scholar 

  • Bouligand Y (1965) On a twisted fibrillar arrangement common to several biologic structures. C R Acad Sci Hebd Seances Acad Sci D 261(22):4864–4867

    CAS  PubMed  Google Scholar 

  • Braconnot H (1811) Sur la nature des champignons. Annales de chimie ou recueil de mémoires concernant la chimie et les arts qui en dépendent et spécialement la pharmacie 79:265–304

    Google Scholar 

  • Brunner E, Ehrlich H, Schupp P, Hedrich R, Hunoldt S, Kammer M, Machill S, Paasch S, Bazhenov VV, Kurek DV, Arnold T, Brockmann S, Ruhnow M, Born R (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168(3):539–547

    Article  CAS  Google Scholar 

  • Callister WD, Rethwisch DG (2013) Materials science and engineering: an introduction. Wiley, New York

    Google Scholar 

  • Carlstrom D (1957) The crystal structure of alpha-chitin (poly-N-acetyl-D-glucosamine). J Biophys Biochem Cytol 3(5):669–683

    Article  CAS  Google Scholar 

  • Chapman RF (2013) The Insects. Cambridge, Cambridge University Press, Structure and Function

    Google Scholar 

  • Cornman RS (2009) Molecular evolution of Drosophila cuticular protein genes. PLoS ONE 4(12):e8345

    Article  Google Scholar 

  • Cornman RS (2010) The distribution of GYR- and YLP-like motifs in Drosophila suggests a general role in cuticle assembly and other protein-protein interactions. PLoS One 5(9)

    Google Scholar 

  • Cornman RS, Togawa T, Dunn WA, He N, Emmons AC, Willis JH (2008) Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae. BMC Genom 9:22

    Article  Google Scholar 

  • Cornman RS, Willis JH (2008) Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. Insect Biochem Mol Biol 38(6):661–676

    Article  CAS  Google Scholar 

  • Cornman RS, Willis JH (2009) Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol Biol 18(5):607–622

    Article  CAS  Google Scholar 

  • Crini G, Badot P-M, Guibal E (2007) Chitine et chitosane – Du biopolymère à l’application, Presse universitaire de Franche-Comté

    Google Scholar 

  • Dauby P, Jeuniaux C (1986) Origine exogène de la chitine décelée chez les Spongiaires. Cah Biol Mar 28:121–129

    Google Scholar 

  • Dorfmueller HC, Ferenbach AT, Borodkin VS, van Aalten DM (2014) A structural and biochemical model of processive chitin synthesis. J Biol Chem 289(33):23020–23028

    Article  CAS  Google Scholar 

  • Ehrlich H, Krautter M, Hanke T, Simon P, Knieb C, Heinemann S, Worch H (2007a) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool B Mol Dev Evol 308(4):473–483

    Article  Google Scholar 

  • Ehrlich H, Maldonado M, Spindler KD, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S, Worch H (2007b) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J Exp Zool B Mol Dev Evol 308(4):347–356

    Article  Google Scholar 

  • Ehrlich H, Rigby JK, Botting JP, Tsurkan MV, Werner C, Schwille P, Petrasek Z, Pisera A, Simon P, Sivkov VN, Vyalikh DV, Molodtsov SL, Kurek D, Kammer M, Hunoldt S, Born R, Stawski D, Steinhof A, Bazhenov VV, Geisler T (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497

    Article  CAS  Google Scholar 

  • Fränkel S, Kelly A (1901) Beiträge zur Constitution des Chitins. Monatsh Chem 23(2):123–132

    Article  Google Scholar 

  • Futahashi R, Okamoto S, Kawasaki H, Zhong YS, Iwanaga M, Mita K, Fujiwara H (2008) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38(12):1138–1146

    Article  CAS  Google Scholar 

  • Gangishetti U, Breitenbach S, Zander M, Saheb SK, Muller U, Schwarz H, Moussian B (2009) Effects of benzoylphenylurea on chitin synthesis and orientation in the cuticle of the Drosophila larva. Eur J Cell Biol 88(3):167–180

    Article  CAS  Google Scholar 

  • Goncalves IR, Brouillet S, Soulie MC, Gribaldo S, Sirven C, Charron N, Boccara M, Choquer M (2016) Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evol Biol 16(1):252

    Article  Google Scholar 

  • Gonell HW (1926) Rontgenographische Studien an Chitin. Hoppe-Seyler’s Zeitschrift fuer Physiologische Chemie Berlin 152:18–30

    Article  CAS  Google Scholar 

  • Hamodrakas SJ, Willis JH, Iconomidou VA (2002) A structural model of the chitin-binding domain of cuticle proteins. Insect Biochem Mol Biol 32(11):1577–1583

    Article  CAS  Google Scholar 

  • Harrison FW, Rice ME (1993) Onychophora, chilopoda, and lesser protostomata. John Wiley, New York

    Google Scholar 

  • Herth W, Schnepf E (1980) The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma 105(1–2):129–133

    Article  Google Scholar 

  • Jang MK, Kong BG, Jeong YI, Lee CH, Nah JW (2004) Physicochemical characterization of alpha-chitin, beta-chitin, and gamma-chitin separated from natural resources. J Polym Sci Part A Polym Chem 42(14):3423–3432

    Article  CAS  Google Scholar 

  • Jeuniaux C (1982) La chitine dans le regne animal. Bulletin de la Societe Zoologique de France 107(3):363–386

    CAS  Google Scholar 

  • Katz O (2018) Extending the scope of Darwin’s ‘abominable mystery’: integrative approaches to understanding angiosperm origins and species richness. Ann Bot 121(1):1–8

    Article  Google Scholar 

  • Lease HM, Wolf BO (2010) Exoskeletal chitin scales isometrically with body size in terrestrial insects. J Morphol 271(6):759–768

    PubMed  Google Scholar 

  • Ledderhose G (1876) Über salzsaures Glucosamin.” Berichte der deutschen chemischen Gesellschaft: 1200–1201

    Google Scholar 

  • Locke M (1966) The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). J Morphol 118(4):461–494

    Article  CAS  Google Scholar 

  • Lotmar W, Picken LER (1950) A new crystallographic modification of chitin and its distribution. Experientia 6(2):58–59

    Article  Google Scholar 

  • Luschnig S, Batz T, Armbruster K, Krasnow MA (2006) serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16(2):186–194

    Article  CAS  Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206(Pt 24):4393–4412

    Article  CAS  Google Scholar 

  • Meyer KH, Pankow G (1935) Sur la constitution et la structure de la chitine. Helv Chim Acta 18(1):589–598

    Article  CAS  Google Scholar 

  • Minke R, Blackwell J (1978) The structure of alpha-chitin. J Mol Biol 120(2):167–181

    Article  CAS  Google Scholar 

  • Miserez A, Rubin D, Waite JH (2010) Cross-linking chemistry of squid beak. J Biol Chem 285(49):38115–38124

    Article  CAS  Google Scholar 

  • Miserez A, Schneberk T, Sun C, Zok FW, Waite JH (2008) The transition from stiff to compliant materials in squid beaks. Science 319(5871):1816–1819

    Article  CAS  Google Scholar 

  • Morgulis S (1916) The Chemical Constitution of Chitin. Science 44(1146):866–867

    Article  CAS  Google Scholar 

  • Moussian B (2008) The role of GlcNAc in formation and function of extracellular matrices. Comp Biochem Physiol B Biochem Mol Biol 149(2):215–226

    Article  Google Scholar 

  • Moussian B (2013) The Arthropod Cuticle. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin, Heidelberg, pp 171–196

    Chapter  Google Scholar 

  • Moussian B, Schwarz H, Bartoszewski S, Nusslein-Volhard C (2005) Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J Morphol 264(1):117–130

    Article  CAS  Google Scholar 

  • Moussian B, Tang E, Tonning A, Helms S, Schwarz H, Nusslein-Volhard C, Uv AE (2006) Drosophila Knickkopf and Retroactive are needed for epithelial tube growth and cuticle differentiation through their specific requirement for chitin filament organization. Development 133(1):163–171

    Article  CAS  Google Scholar 

  • Mushi NE, Butchosa N, Salajkova M, Zhou Q, Berglund LA (2014) Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydr Polym 112:255–263

    Article  CAS  Google Scholar 

  • Nepi M, Grasso DA, Mancuso S (2018) Nectar in Plant-Insect Mutualistic Relationships: From Food Reward to Partner Manipulation. Front Plant Sci 9:1063

    Article  Google Scholar 

  • Neville AC (1975) Biology of the arthropod cuticle. Springer Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  • Neville AC, Luke BM (1969) A Two-system model for chitin-protein complexes in insect cuticles. Tissue Cell 1(4):689–707

    Article  CAS  Google Scholar 

  • Nishino T, Matsui R, Nakamae K (1999) Elastic modulus of the crystalline regions of chitin and chitosan. J Polym Sci B: Polym Phys 37(11):1191–1196

    Article  CAS  Google Scholar 

  • Odier A (1823) Mémoires sur la composition chimique des parties cornées des insectes. Mémoires de la Société d’Histoire Naturelle de Paris 1:29–42

    Google Scholar 

  • Peters W (1972) Occurrence of chitin in Mollusca. Comparat Biochem Physiol B 41((3)):541–550

    Article  CAS  Google Scholar 

  • Raabe D, Al-Sawalmih A, Yi SB, Fabritius H (2007) Preferred crystallographic texture of alpha-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater 3(6):882–895

    Article  CAS  Google Scholar 

  • Raabe D, Romano P, Sachs C, Al-Sawalmih A, Brokmeier H-G, Yi S-B, Servos G, Hartwig HG (2005a) Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue. J Cryst Growth 283(1–2):1–7

    Article  CAS  Google Scholar 

  • Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi S, Servos G, Hartwig HG (2006) Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 421(1–2):143–153

    Article  Google Scholar 

  • Raabe D, Sachs C, Romano P (2005b) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53(15):4281–4292

    Article  CAS  Google Scholar 

  • Rosenfeld JA, Reeves D, Brugler MR, Narechania A, Simon S, Durrett R, Foox J, Shianna K, Schatz MC, Gandara J, Afshinnekoo E, Lam ET, Hastie AR, Chan S, Cao H, Saghbini M, Kentsis A, Planet PJ, Kholodovych V, Tessler M, Baker R, DeSalle R, Sorkin LN, Kolokotronis SO, Siddall ME, Amato G, Mason CE (2016) Genome assembly and geospatial phylogenomics of the bed bug Cimex lectularius. Nat Commun 7:10164

    Article  CAS  Google Scholar 

  • Rudall KM (1963) The chitin/protein complexes of insect cuticles. Treherne & Wiggles-worth, vol 1, Beament, Treherne & Wiggles-worth, vol 1, pp 257–313, 24 figs, pp 257–313

    Google Scholar 

  • Schimmelpfeng K, Strunk M, Stork T, Klambt C (2006) Mummy encodes an UDP-N-acetylglucosamine-dipohosphorylase and is required during Drosophila dorsal closure and nervous system development. Mech Dev 123(6):487–499

    Article  CAS  Google Scholar 

  • Schonitzer V, Weiss IM (2007) The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z. BMC Struct Biol 7:71

    Article  Google Scholar 

  • Semino CE, Allende ML (2000) Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. Int J Dev Biol 44(2):183–193

    CAS  PubMed  Google Scholar 

  • Semino CE, Specht CA, Raimondi A, Robbins PW (1996) Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synthesis of Nod-like chitin oligosaccharides during early embryogenesis. Proc Natl Acad Sci U S A 93(10):4548–4553

    Article  CAS  Google Scholar 

  • Sikorski P, Hori R, Wada M (2009) Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data. Biomacromol 10(5):1100–1105

    Article  CAS  Google Scholar 

  • Städeler G (1859) Untersuchungen über das Fibroin, Spongin und Chitin, nebst Bemerkungen über den thierischen Schleim. Justus Liebig Annalen der Chemie 111(1):12–28

    Article  Google Scholar 

  • Tang WJ, Fernandez J, Sohn JJ, Amemiya CT (2015) Chitin is endogenously produced in vertebrates. Curr Biol 25(7):897–900

    Article  CAS  Google Scholar 

  • Tonning A, Helms S, Schwarz H, Uv AE, Moussian B (2006) Hormonal regulation of mummy is needed for apical extracellular matrix formation and epithelial morphogenesis in Drosophila. Development 133(2):331–341

    Article  CAS  Google Scholar 

  • Tonning A, Hemphala J, Tang E, Nannmark U, Samakovlis C, Uv A (2005) A transient luminal chitinous matrix is required to model epithelial tube diameter in the Drosophila trachea. Dev Cell 9(3):423–430

    Article  CAS  Google Scholar 

  • van Eldijk TJB, Wappler T, Strother PK, van der Weijst CMH, Rajaei H, Visscher H, van de Schootbrugge B (2018) A Triassic-Jurassic window into the evolution of Lepidoptera. Sci Adv 4(1):e1701568

    Article  Google Scholar 

  • Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33(3):187–199

    Article  Google Scholar 

  • Watson BD (1965) The fine structure of the body-wall in a free-living nematode, Euchromadora vulgaris. Quart. J. micr. Sci. 106(1):75–81

    Google Scholar 

  • Wester DH (1909) “Über die Verbreitung und Lokalisation des Chitins im Tierreich “ Zool. Jahrb. Abt. Syst. 28:531–558

    Google Scholar 

  • Wharton D (1980) Nematode egg-shells. Parasitology 81(2):447–463

    Article  CAS  Google Scholar 

  • Wharton DA, Jenkins T (1978) Structure and chemistry of the egg-shell of a nematode (Trichuris suis). Tissue Cell 10(3):427–440

    Article  CAS  Google Scholar 

  • Yu Z, Lau D (2015) molecular dynamics study on stiffness and ductility in chitin-protein composite. J Mater Sci 50:7149–7157

    Article  CAS  Google Scholar 

  • Zakrzewski AC, Weigert A, Helm C, Adamski M, Adamska M, Bleidorn C, Raible F, Hausen H (2014) Early divergence, broad distribution, and high diversity of animal chitin synthases. Genome Biol Evol 6(2):316–325

    Article  Google Scholar 

  • Zhang J, Liu X, Zhang J, Li D, Sun Y, Guo Y, Ma E, Zhu KY (2010) Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen). Insect Biochem Mol Biol 40(11):824–833

    Article  CAS  Google Scholar 

  • Zhang Q, Mey W, Ansorge J, Starkey TA, McDonald LT, McNamara ME, Jarzembowski EA, Wichard W, Kelly R, Ren X, Chen J, Zhang H, Wang B (2018) Fossil scales illuminate the early evolution of lepidopterans and structural colors. Sci Adv 4(4):e1700988

    Article  Google Scholar 

  • Zhang Y, Foster JM, Nelson LS, Ma D, Carlow CK (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev Biol 285(2):330–339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am deeply thankful to Dr. Zhitao Yu, Department of Entomology, Kansas State University, Manhattan, USA, for her substantial contribution to the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Moussian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moussian, B. (2019). Chitin: Structure, Chemistry and Biology. In: Yang, Q., Fukamizo, T. (eds) Targeting Chitin-containing Organisms. Advances in Experimental Medicine and Biology, vol 1142. Springer, Singapore. https://doi.org/10.1007/978-981-13-7318-3_2

Download citation

Publish with us

Policies and ethics