Skip to main content
Log in

Experimental Study of the Impact of Substrate Shape and Tilting on Particle Velocity in Suspension Plasma Spraying

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Suspension plasma spraying has shown its capacity to deposit finely structured coatings with a wide range of microstructures including columnar microstructures that are generally sought in thermal barrier coating applications for gas turbines. However, some challenges are still to be taken up before the application of the technology at an industrial scale. One deals with the deposition of a uniform and reliable coating on a complex substrate shape. This work offers an experimental observation of submicron particle streams close to the substrate in order to understand mechanisms of deposition. Effects of the substrate shape and tilting were investigated on particle velocity, direction and coating growth. It was shown that particle velocities and directions are disrupted by the substrate presence up to 10 mm upstream. When the substrate is a cylinder or in a tilted orientation to the plasma jet, particles kinetic behavior is less affected. Finally, submicron particle velocity vectors orientation near impact greatly shape the coating morphology. When impacting with a 40° angle of incidence, columns appeared on beads, contrary to submicron particle streams impacting orthogonally to the substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Bernard, A. Quet, L. Bianchi, V. Schick, A. Joulia, A. Malié, and B. Rémy, Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties, J. Therm. Spray Technol., 2017, 26(6), p 1025-1037

    Article  CAS  Google Scholar 

  2. E. Pfender, Fundamental Studies Associated with the Plasma Spray Process, Surf. Coat. Technol., 1988, 34(1), p 1-14

    Article  CAS  Google Scholar 

  3. C.W. Kang, H.W. Ng, and S.C.M. Yu, Comparative Study of Plasma Spray Flow Fields and Particle Behavior Near to Flat Inclined Substrates, Plasma Chem. Plasma Process., 2006, 26(2), p 149-175

    Article  CAS  Google Scholar 

  4. M. Vardelle, A. Vardelle, and P. Fauchais, Spray Parameters and Particle Behavior Relationships During Plasma Spraying, J. Therm. Spray Technol., 1993, 2(1), p 79-91

    Article  CAS  Google Scholar 

  5. J.O. Berghaus, S. Bouaricha, J.G. Legoux, and C. Moreau, Injection conditions and in-flight particle states in suspension plasma spraying of alumina and zirconia nano-ceramics, Thermal spray 2005: thermal spray connects: explore its surfacing potential, E. Lugscheider, Ed., DVS-German Welding Society, Basel, 2005, p 2-4

    Google Scholar 

  6. R. Etchart-Salas, V. Rat, J.F. Coudert, P. Fauchais, N. Caron, K. Wittman, and S. Alexandre, Influence of Plasma Instabilities in Ceramic Suspension Plasma Spraying, J. Therm. Spray Technol., 2007, 16(5–6), p 857-865

    Article  CAS  Google Scholar 

  7. C. Delbos, J. Fazilleau, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26(4), p 393-414

    Article  CAS  Google Scholar 

  8. H. Martin, Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces, Adv. Heat Transfer, 1977, 13, p 1-60

    Article  CAS  Google Scholar 

  9. C.G. Phillips and S.R. Kaye, The Influence of The Viscous Boundary Layer on The Critical Stokes Number for Particle Impaction Near A Stagnation Point, J. Aerosol Sci., 1999, 30(6), p 709-718

    Article  CAS  Google Scholar 

  10. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    Article  CAS  Google Scholar 

  11. M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24(1–2), p 11-23

    CAS  Google Scholar 

  12. A. Farrokhpanah, T.W. Coyle, and J. Mostaghimi, Numerical Study of Suspension Plasma Spraying, J. Therm. Spray Technol., 2017, 26(1–2), p 12-36

    Article  Google Scholar 

  13. K. Pourang, C. Moreau, and A. Dolatabadi, Effect of Substrate and Its Shape on in-Flight Particle Characteristics in Suspension Plasma Spraying, J. Therm. Spray Technol., 2016, 25(1–2), p 44-54

    Article  CAS  Google Scholar 

  14. K. VanEvery, M.J.M. Krane, R.W. Trice, H. Wang, W. Porter, M. Besser, D. Sordelet, J. Ilavsky, and J. Almer, Column Formation in Suspension Plasma-Sprayed Coatings and Resultant Thermal Properties, J. Therm. Spray Technol., 2011, 20(4), p 817-828

    Article  CAS  Google Scholar 

  15. P. Sokołowski, S. Kozerski, L. Pawłowski, and A. Ambroziak, The Key Process Parameters Influencing Formation of Columnar Microstructure in Suspension Plasma Sprayed Zirconia Coatings, Surf. Coat. Technol., 2014, 260, p 97-106

    Article  Google Scholar 

  16. E. Aubignat, M.P. Planche, D. Billieres, A. Allimant, L. Girardot, Y. Bailly, and G. Montavon, Optimization of the Injection with a Twin-Fluid Atomizer for Suspension Plasma Spray Process Using Three Non-Intrusive Diagnostic Tools, J. Vis., 2016, 19(1), p 21-36

    Article  CAS  Google Scholar 

  17. B. Bernard, L. Bianchi, A. Malié, A. Joulia, and B. Rémy, Columnar Suspension Plasma Sprayed Coating Microstructural Control for Thermal Barrier Coating Application, J. Eur. Ceram. Soc., 2016, 36(4), p 1081-1089

    Article  CAS  Google Scholar 

  18. Y. Zhao, Z. Yu, M.P. Planche, A. Lasalle, A. Allimant, G. Montavon, and H. Liao, Influence of Substrate Properties on the Formation of Suspension Plasma Sprayed Coatings, J. Therm. Spray Technol., 2018, 27(1–2), p 73-83

    Article  CAS  Google Scholar 

  19. T. Ba, C.W. Kang, and H.W. Ng, Numerical Study of the Plasma Flow Field and Particle In-flight Behavior with the Obstruction of a Curved Substrate, J. Therm. Spray Technol., 2009, 18, p 858. https://doi.org/10.1007/s11666-009-9395-1

    Article  CAS  Google Scholar 

  20. S. Bansard, Etude de l’ablation d’un Composite—Fibres de Carbone, Résine Phénolique—Par Impact de Gouttes d’alumine: Conception d’un Banc d’Expériences. Ph.D. Thesis, University of Limoges, 2004

  21. H.X. Wang, X. Chen, and W. Pan, Modeling Study on the Entrainment of Ambient Air into Subsonic Laminar and Turbulent Argon Plasma Jets, Plasma Chem. Plasma Process., 2007, 27(2), p 141-162

    Article  Google Scholar 

  22. A. Joulia, G. Bolelli, E. Gualtieri, L. Lusvarghi, S. Valeri, M. Vardelle, S. Rossignol, and A. Vardelle, Comparing the Deposition Mechanisms in Suspension Plasma Spray (Sps) and Solution Precursor Plasma Spray (Spps) Deposition Of Yttria-Stabilised Zirconia (Ysz), J. Eur. Ceram. Soc., 2014, 34(15), p 3925-3940

    Article  CAS  Google Scholar 

  23. T. Kondo, H. Muta, K. Kurosakin, F. Kargl, A. Yamaji, M. Furuya, and Y. Ohishi, Density and Viscosity of Liquid ZrO2 Measured by Aerodynamic Levitation Technique, Heliyon, 2019, 5(7), p e02049. https://doi.org/10.1016/j.heliyon.2019.e02049

    Article  Google Scholar 

  24. S.L. Anderson and E.K. Longmire, Particle Motion in the Stagnation Zone of an Impinging Air Jet, J. Fluid Mech., 1995, 299, p 333-366

    Article  Google Scholar 

  25. S.F. Hoerner, Fluid-dynamic drag: theoretical, experimental and statistical information. in Hoerner Fluid Dynamics, Chap. 3, ed. by L.A. Hoerner, 1992

  26. P. Wang, W. He, G. Mauer, R. Mücke, and R. Vaßen, Monte Carlo Simulation of Column Growth in Plasma Spray Physical Vapor Deposition Process, Surf. Coat. Technol., 2018, 335, p 188-197

    Article  CAS  Google Scholar 

  27. A.G. Dirks and H.J. Leamy, Columnar Microstructure in Vapor-Deposited Thin Films, Thin Solid Films, 1977, 47(3), p 219-233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the French National Association of R&T (ANRT) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dolmaire.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolmaire, A., Goutier, S., Joulia, A. et al. Experimental Study of the Impact of Substrate Shape and Tilting on Particle Velocity in Suspension Plasma Spraying. J Therm Spray Tech 29, 358–367 (2020). https://doi.org/10.1007/s11666-019-00977-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00977-8

Keywords

Navigation