Skip to main content
Log in

Critical Considerations in Power Measurements for the Precise Estimation of Energy Costs in Plasma NOx Synthesis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The great advantage of plasma technology in harnessing abundant clean energy for electrifying and decentralizing the chemical industry holds the promise of attaining carbon neutrality. Therefore, recent research efforts have been dedicated to reducing the energy costs of plasma processes to facilitate the commercialization of this technology. However, it has been noted an inconsistency in reporting energy costs across the literature resulted from inaccurate estimation of power consumption within the system, leading to the misevaluation of the process, its underlying mechanism, and the significance of critical factors. This study comprehensively addresses these challenges by discussing and refining methods for estimating power consumption in a plasma system. Insights are drawn from our ongoing research in plasma NOx synthesis, specifically a thorough analysis of the discharge dynamics in a recently developed reactor “high-frequency spark discharge” using a high-speed camera, ICCD camera, and high-performance oscilloscope at various pulse widths of the applied voltage. The investigation revealed the importance of accounting for the post-spark period in the voltage cycle during power estimation, as it demonstrates an influence on NOx synthesis. Furthermore, the study highlighted and addressed critical errors in power measurement and energy cost estimation in the literature. It is found that a significant error, exceeding ± 70%, arises from overlooking signals delay in the setup and improper adjustment of oscilloscope functions, particularly channel impedance, data averaging, bandwidth, and sampling rate. This paper serves as a valuable guide towards establishing standardized measurements toward the precise estimation of energy costs in plasma processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Zhou R, Zhao Y, Zhou R, Zhang T, Cullen P, Zheng Y et al (2022) Plasma-electrified up‐carbonization for low‐carbon clean energy. Carbon Energy 5(1). https://doi.org/10.1002/cey2.260

  2. Bogaerts A, Neyts EC (2018) Plasma technology: an emerging technology for energy storage. ACS Energy Lett 3(4):1013–1027. https://doi.org/10.1021/acsenergylett.8b00184

    Article  CAS  Google Scholar 

  3. Zhang H, Li L, Li X, Wang W, Yan J, Tu X (2018) Warm plasma activation of CO2 in a rotating gliding arc discharge reactor. J CO2 Util 27:472–479. https://doi.org/10.1016/j.jcou.2018.08.020

    Article  CAS  Google Scholar 

  4. Sumi N, Sakamoto T, Akimoto Y, Namihira T, Wang D (2023) Conversion of carbon dioxide into carbon monoxide using nanosecond pulsed discharges. Int J Plasma Environ Sci Technol 17(1):e01004. https://doi.org/10.34343/ijpest.2023.17.e01004

    Article  Google Scholar 

  5. Abdelaziz AA, Teramoto Y, Nozaki T, Kim H-H (2023) Performance of high-frequency spark discharge for efficient NOx production with tunable selectivity. Chem Eng J 144182. https://doi.org/10.1016/j.cej.2023.144182

  6. Winter LR, Chen JG (2021) N2 fixation by plasma-activated processes. Joule 5(2):300–315. https://doi.org/10.1016/j.joule.2020.11.009

    Article  CAS  Google Scholar 

  7. Abdelaziz AA, Teramoto Y, Nozaki T, Kim H-H (2023) Toward reducing the Energy Cost of NOx Formation in a Spark Discharge Reactor through Pinpointing its mechanism. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.2c06535

    Article  Google Scholar 

  8. Wu S, Thapa B, Rivera C, Yuan Y (2021) Nitrate and nitrite fertilizer production from air and water by continuous flow liquid-phase plasma discharge. J Environ Chem Eng 9(2). https://doi.org/10.1016/j.jece.2020.104761

  9. Zhang H, Du C, Wu A, Bo Z, Yan J, Li X (2014) Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production. Int J Hydrog Energy 39(24):12620–12635. https://doi.org/10.1016/j.ijhydene.2014.06.047

    Article  CAS  Google Scholar 

  10. Liu J-L, Li Z, Liu J-H, Li K, Lian H-Y, Li X-S et al (2019) Warm-plasma catalytic reduction of CO2 with CH4. Catal Today 330:54–60. https://doi.org/10.1016/j.cattod.2018.05.046

    Article  CAS  Google Scholar 

  11. Chen X, Kim HH, Nozaki T (2023) Plasma catalytic technology for CH4 and CO2 conversion: a review highlighting fluidized-bed plasma reactor. Plasma Processes Polym. https://doi.org/10.1002/ppap.202200207

    Article  Google Scholar 

  12. Kim H-H, Teramoto Y, Ogata A, Takagi H, Nanba T (2016) Plasma Catalysis for Environmental Treatment and Energy Applications. Plasma Chem Plasma Process 36(1):45–72. https://doi.org/10.1007/s11090-015-9652-7

    Article  CAS  Google Scholar 

  13. Diamond J, Profili J, Hamdan A (2019) Characterization of various air plasma discharge modes in contact with Water and their effect on the degradation of reactive dyes. Plasma Chem Plasma Process 39(6):1483–1498. https://doi.org/10.1007/s11090-019-10014-9

    Article  CAS  Google Scholar 

  14. Abdelaziz AA, Ishijima T, Tizaoui C (2018) Development and characterization of a wire-plate air bubbling plasma for wastewater treatment using nanosecond pulsed high voltage. J Appl Phys 124(5):053302. https://doi.org/10.1063/1.5037107

    Article  CAS  Google Scholar 

  15. Shahidi-Moghadam Z, Ghomi H, Yazdanbakhsh A, Martami M, Rafiee M (2023) Submerged arc plasma treatment of landfill leachate with a high proportion of refractory organics: degradation performance and biodegradability enhancement. J Environ Chem Eng 11(6). https://doi.org/10.1016/j.jece.2023.111330

  16. Pei X, Gidon D, Yang Y-J, Xiong Z, Graves DB (2019) Reducing energy cost of NO production in air plasmas. Chem Eng J 362:217–228. https://doi.org/10.1016/j.cej.2019.01.011

    Article  CAS  Google Scholar 

  17. Rahman M, Cooray V, Montaño R, Liyanage P, Becerra M (2011) NOX production by impulse sparks in air. J Electrostat 69(6):494–500. https://doi.org/10.1016/j.elstat.2011.06.008

    Article  CAS  Google Scholar 

  18. Patil BS, Peeters FJJ, van Rooij GJ, Medrano JA, Gallucci F, Lang J et al (2018) Plasma assisted nitrogen oxide production from air: using pulsed powered gliding arc reactor for a containerized plant. AIChE J 64(2):526–537. https://doi.org/10.1002/aic.15922

    Article  CAS  Google Scholar 

  19. Vervloessem E, Aghaei M, Jardali F, Hafezkhiabani N, Bogaerts A (2020) Plasma-based N2 fixation into NOx: insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron. ACS Sustain Chem Eng 8(26):9711–9720. https://doi.org/10.1021/acssuschemeng.0c01815

    Article  CAS  Google Scholar 

  20. Muzammil I, Lee DH, Dinh DK, Kang H, Roh SA, Kim Y-N et al (2021) A novel energy efficient path for nitrogen fixation using a non-thermal arc. RSC Adv 11(21):12729–12738. https://doi.org/10.1039/d1ra01357b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patil BS, Wang Q, Hessel V, Lang J (2015) Plasma N2-fixation: 1900–2014. Catal Today 256:49–66. https://doi.org/10.1016/j.cattod.2015.05.005

    Article  CAS  Google Scholar 

  22. Janda M, Hensel K, Machala Z, Field TA (2023) The influence of electric circuit parameters on NOx generation by transient spark discharge. J Phys D: Appl Phys 56(48). https://doi.org/10.1088/1361-6463/ace634

  23. Wang W, Patil B, Heijkers S, Hessel V, Bogaerts A (2017) Nitrogen fixation by gliding Arc plasma: Better Insight by Chemical Kinetics Modelling. Chemsuschem 10:2145–2157. https://doi.org/10.1007/s11090-024-10472-w

    Article  CAS  PubMed  Google Scholar 

  24. Song Y-H, Lee DH, Kim K-T, Kim Y-N, Kang H (2023) Industrial applications of rotating gliding arc plasma. Int J Plasma Environ Sci Technol 17:e01005. https://doi.org/10.34343/ijpest.2023.17.e01005

    Article  Google Scholar 

  25. Lee DH, Kim K-T, Song Y-H, Kang WS, Jo S (2012) Mapping plasma Chemistry in Hydrocarbon Fuel Processing processes. Plasma Chem Plasma Process 33(1):249–269. https://doi.org/10.1007/s11090-012-9407-7

    Article  CAS  Google Scholar 

  26. Lee DH, Song Y-H, Kim K-T, Lee J-O (2013) Comparative study of methane activation process by different plasma sources. Plasma Chem Plasma Process 33(4):647–661. https://doi.org/10.1007/s11090-013-9456-6

    Article  CAS  Google Scholar 

  27. Snoeckx R, Bogaerts A (2017) Plasma technology - a novel solution for CO2 conversion? Chem Soc Rev 46(19):5805–5863. https://doi.org/10.1039/c6cs00066e

    Article  CAS  PubMed  Google Scholar 

  28. Kado S, Sekine Y, Nozaki T, Okazaki K (2004) Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion. Catal Today 89(1):47–55. https://doi.org/10.1016/j.cattod.2003.11.036

    Article  CAS  Google Scholar 

  29. Eyde HS (1906) The manufacture of nitrates from the atmoshere by the electric arc-birkeland-eyde process. J R Soc Arts 57(2949):568–576

    Google Scholar 

  30. Bosch C Process of producing ammonia. In: office Up, editor. US1911

  31. Rouwenhorst KHR, Jardali F, Bogaerts A, Lefferts L (2021) From the Birkeland-Eyde process towards energy-efficient plasma-based NOX synthesis: a techno-economic analysis. Energy Environ Sci 14(5):2520–2534. https://doi.org/10.1039/d0ee03763j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jardali F, Van Alphen S, Creel J, Ahmadi Eshtehardi H, Axelsson M, Ingels R et al (2021) NOx production in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation. Green Chem 23(4):1748–1757. https://doi.org/10.1039/d0gc03521a

    Article  CAS  Google Scholar 

  33. Vervloessem E, Gorbanev Y, Nikiforov A, De Geyter N, Bogaerts A (2022) Sustainable NOx production from air in pulsed plasma: elucidating the chemistry behind the low energy consumption. Green Chem 24(2):916–929. https://doi.org/10.1039/d1gc02762j

    Article  CAS  Google Scholar 

  34. Chen H, Wu A, Mathieu S, Gao P, Li X, Xu BZ et al (2021) Highly efficient nitrogen fixation enabled by an atmospheric pressure rotating gliding arc. Plasma Process Polym 18(7):2000200. https://doi.org/10.1002/ppap.202000200

    Article  CAS  Google Scholar 

  35. Britun N, Gamaleev V, Hori M (2021) Evidence of near-the-limit energy cost NO formation in atmospheric spark discharge. Plasma Sources Sci Technol 30(8):08lt2. https://doi.org/10.1088/1361-6595/ac12bf

    Article  CAS  Google Scholar 

  36. Dinh DK, Muzammil I, Kang WS, Kim D, Lee DH (2021) Reducing energy cost of in situ nitrogen fixation in water using an arc-DBD combination. Plasma Sources Sci Technol 30(5):055020. https://doi.org/10.1088/1361-6595/abff72

    Article  CAS  Google Scholar 

  37. Patil BS, Rovira Palau J, Hessel V, Lang J, Wang Q (2015) Plasma Nitrogen Oxides Synthesis in a milli-scale gliding Arc Reactor: investigating the electrical and process parameters. Plasma Chem Plasma Process 36(1):241–257. https://doi.org/10.1007/s11090-015-9671-4

    Article  CAS  Google Scholar 

  38. Janda M, Martišovitš V, Hensel K, Machala Z (2016) Generation of Antimicrobial NOx by Atmospheric Air transient spark discharge. Plasma Chem Plasma Process 36(3):767–781. https://doi.org/10.1007/s11090-016-9694-5

    Article  CAS  Google Scholar 

  39. Wandell RJ, Wang H, Bulusu RKM, Gallan RO, Locke BR (2019) Formation of Nitrogen Oxides by Nanosecond Pulsed plasma discharges in gas–liquid reactors. Plasma Chem Plasma Process 39:643–666. https://doi.org/10.1007/s11090-019-09981-w

    Article  CAS  Google Scholar 

  40. Alves LL, Becker MM, van Dijk J, Gans T, Go DB, Stapelmann K et al (2023) Foundations of plasma standards. Plasma Sources Sci Technol 32(2). https://doi.org/10.1088/1361-6595/acb810

  41. Wang H, Wandell RJ, Locke BR (2018) The influence of carrier gas on plasma properties and hydrogen peroxide production in a nanosecond pulsed plasma discharge generated in a water-film plasma reactor. J Phys D: Appl Phys 51(9). https://doi.org/10.1088/1361-6463/aaa835

  42. Roush RA, Hutcherson RK, Ingram MW, Grothaus MG (1996) Effects of pulse risetime and pulse width on the destruction of toluene and NOx in a coaxial pulsed corona reactor. Proceedings of 1996 International Power Modulator Symposium pp. 79–84

  43. Kornev I, Saprykin F, Preis S (2017) Stability and energy efficiency of pulsed corona discharge in treatment of dispersed high-conductivity aqueous solutions. J Electrostat 89:42–50. https://doi.org/10.1016/j.elstat.2017.07.001

    Article  Google Scholar 

  44. Benard N, Moreau E (2014) Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids 55(11). https://doi.org/10.1007/s00348-014-1846-x

  45. Bulusu RKM, Wandell RJ, Gallan RO, Locke BR (2019) Nitric oxide scavenging of hydroxyl radicals in a nanosecond pulsed plasma discharge gas–liquid reactor. J Phys D: Appl Phys 52(50):504002. https://doi.org/10.1088/1361-6463/ab431a

    Article  CAS  Google Scholar 

  46. Gherardi M, Puač N, Marić D, Stancampiano A, Malović G, Colombo V et al (2015) Practical and theoretical considerations on the use of ICCD imaging for the characterization of non-equilibrium plasmas. Plasma Sources Sci Technol 24(6). https://doi.org/10.1088/0963-0252/24/6/064004

  47. Ashpis DE, Laun MC, Griebeler EL (2017) Progress toward Accurate Measurement of Dielectric Barrier Discharge plasma Actuator Power. AIAA J 55(7):2254–2268. https://doi.org/10.2514/1.J055816

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tsonev I, O’Modhrain C, Bogaerts A, Gorbanev Y (2023) Nitrogen fixation by an Arc plasma at elevated pressure to increase the Energy Efficiency and Production Rate of NOx. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.2c06357

    Article  Google Scholar 

  49. Yan K, Hui H, Cui M, Miao J, Wu X, Bao C et al (1998) Corona induced non-thermal plasmas: fundamental study and industrial applications. J Electrostat 44(1):17–39. https://doi.org/10.1016/S0304-3886(98)00019-9

    Article  CAS  Google Scholar 

  50. McAdams R (2007) Pulsed corona treatment of gases: system scaling and efficiency. Plasma Sources Sci Technol 16(4):703–710. https://doi.org/10.1088/0963-0252/16/4/003

    Article  CAS  Google Scholar 

  51. Francke KP, Rudolph R, Miessner H (2003) Design and operating characteristics of a simple and Reliable DBD Reactor for Use with Atmospheric Air. Plasma Chem Plasma Process 23(1):47–57. https://doi.org/10.1023/A:1022412718224

    Article  CAS  Google Scholar 

  52. Takashima K, Yin Z, Adamovich IV (2012) Measurements and kinetic modeling of energy coupling in volume and surface nanosecond pulse discharges. Plasma Sources Sci Technol 22(1). https://doi.org/10.1088/0963-0252/22/1/015013

  53. Kunishima Y, Takashima K, Kaneko T (2019) Apparent reduced electric field control with nanosecond pulse width in a DC discharge for nitrogen vibrational excitation. Jpn J Appl Phys 58(6). https://doi.org/10.7567/1347-4065/ab1e58

  54. Tektronix (2008) Understanding Oscilloscope Bandwidth, Rise Time and Signal Fidelity. Accessed 2008

Download references

Acknowledgements

This work was supported by JST CREST (grant number: JPMJCR19R3).

Author information

Authors and Affiliations

Authors

Contributions

Ayman A. Abdelaziz: Conceptualization, Methodology, Data curation, Formal analysis, Investigation, Writing–original draft, Writing – review & editing. Yoshiyuki Teramoto: Investigation, Formal analysis. Dae-Yeong Kim: Investigation, Formal analysis. Tomohiro Nozaki: Formal analysis, Project administration, Funding acquisition. Hyun-Ha Kim: Conceptualization, Investigation, Formal analysis, Writing–original draft, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Ayman A. Abdelaziz or Hyun-Ha Kim.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaziz, A.A., Teramoto, Y., Kim, DY. et al. Critical Considerations in Power Measurements for the Precise Estimation of Energy Costs in Plasma NOx Synthesis. Plasma Chem Plasma Process (2024). https://doi.org/10.1007/s11090-024-10472-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11090-024-10472-w

Keywords

Navigation