Skip to main content
Log in

Straight and curved cylindrical rods settling in quiescent fluid with application to atmospheric microplastics

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this study, an experimental analysis is conducted on the settling of straight and curved cylindrical rods, which are used to replicate a Reynolds number range applicable to atmospheric settling of microplastic fibres. The rods are dropped in a chamber filled with a quiescent water–glycerin mixture, and their settling velocity is determined from the images of two cameras arranged with perpendicular views. It is shown that a curved cylindrical rod settles faster than a straight cylindrical rod with the same diameter and length. As the rod radius of curvature decreases, the terminal velocity increases, and the corresponding drag coefficient decreases. The maximum difference in the terminal velocity between the straight and curved rods depends on the rod aspect ratio, curvature index, and Reynolds number. A new semi-empirical model is also developed to estimate the drag coefficient and terminal velocity of both straight and curved cylindrical rods studied in this research. The results of the new model are significantly more consistent with the experimental data compared to the previous models, with a low RMS error of 6.8%. This novel model has been utilized to predict the terminal velocity of realistic fibres in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available upon reasonable request to the authors.

References

  • Allen S, Allen D, Phoenix V et al (2019) Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 12(5):339–344

    Article  Google Scholar 

  • Allen S, Allen D, Baladima F et al (2021) Evidence of free tropospheric and long-range transport of microplastic at pic du midi observatory. Nat Commun 12(1):7242

    Article  Google Scholar 

  • Bagheri G, Bonadonna C (2016) On the drag of freely falling non-spherical particles. Powder Technol 301:526–544

    Article  Google Scholar 

  • Banaei AA, Rahmani M, Martinez DM et al (2020) Inertial settling of flexible fiber suspensions. Phys Rev Fluids 5(2):024301

    Article  Google Scholar 

  • Bergmann M, Mützel SM, Primpke S et al (2019) White and wonderful? Microplastics prevail in snow from the alps to the arctic. Sci Adv 5(8):eaxx1157

    Article  Google Scholar 

  • Bergmann M, Collard F, Fabres J et al (2022) Plastic pollution in the Arctic. Nat Rev Earth Environ 3(5):323–337

    Article  Google Scholar 

  • Brenner H (1962) Effect of finite boundaries on the stokes resistance of an arbitrary particle. J Fluid Mech 12(1):35–48

    Article  MathSciNet  Google Scholar 

  • Cai L, Wang J, Peng J et al (2017) Characteristic of microplastics in the atmospheric fallout from dongguan city, china: preliminary research and first evidence. Environ Sci Pollut Res 24:24928–24935

    Article  Google Scholar 

  • Candelier F, Mehlig B (2016) Settling of an asymmetric dumbbell in a quiescent fluid. J Fluid Mech 802:174–185

    Article  MathSciNet  Google Scholar 

  • Cheng N (2008) Formula for the viscosity of a glycerol- water mixture. Indust Eng Chem Res 47(9):3285–3288

    Article  Google Scholar 

  • Chow A, Adams E (2011) Prediction of drag coefficient and secondary motion of free-falling rigid cylindrical particles with and without curvature at moderate reynolds number. J Hydraul Eng 137(11):1406–1414

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles. Academic Press, New York, Drops and Particles

    Google Scholar 

  • Cox R (1970) The motion of long slender bodies in a viscous fluid part 1 general theory. J Fluid Mech 44(4):791–810

    Article  Google Scholar 

  • Dehghani S, Moore F, Akhbarizadeh R (2017) Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ Sci Pollut Res 24:20360–20371

    Article  Google Scholar 

  • Dris R, Gasperi JMS et al (2016) Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Marine Pollut Bull 104(1):290–293

    Article  Google Scholar 

  • Du Roure O, Lindner A, Nazockdast EN et al (2019) Dynamics of flexible fibers in viscous flows and fluids. Annu Rev Fluid Mech 51:539–572

    Article  MathSciNet  Google Scholar 

  • Evangeliou N, Tichy O, Eckhardt S et al (2022) Sources and fate of atmospheric microplastics revealed from inverse and dispersion modelling: from global emissions to deposition. J Hazard Mater 432:128585

    Article  Google Scholar 

  • Finnegan AMD, Süsserott R, Gabbott SE et al (2022) Man-made natural and regenerated cellulosic fibres greatly outnumber microplastic fibres in the atmosphere. Environ Pollut 310:119808

    Article  Google Scholar 

  • Fintzi N, Gamet L, Pierson JL (2023) Inertial loads on a finite-length cylinder embedded in a steady uniform flow. Phys Rev Fluids 8(4):044302

    Article  Google Scholar 

  • Ganser G (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77(2):143–152

    Article  Google Scholar 

  • Goral KD, Guler H, Larsen BE et al (2023) Settling velocity of microplastic particles having regular and irregular shapes. Environ Res 228:115783

    Article  Google Scholar 

  • Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58(1):63–70

    Article  Google Scholar 

  • Henn A (1996) Calculation of the stokes and aerodynamic equivalent diameters of a short reinforcing fiber. Particle Syst Charact 13(4):249–253

    Article  Google Scholar 

  • Huner B, Hussey R (1977) Cylinder drag at low reynolds number. Phys Fluids 20(8):1211–1218

    Article  Google Scholar 

  • Jayaweera KOLF, Mason BJ (1965) The behaviour of freely falling cylinders and cones in a viscous fluid. J Fluid Mech 22:709–720

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford

    Book  Google Scholar 

  • Khalili A, Liu B (2017) Stokes’ paradox: creeping flow past a two-dimensional cylinder in an infinite domain. J Fluid Mech 817:374–387

    Article  MathSciNet  Google Scholar 

  • Kharrouba M, Pierson JL, Magnaudet J (2021) Flow structure and loads over inclined cylindrical rodlike particles and fibers. Phys Rev Fluids 6(4):044308

    Article  Google Scholar 

  • Khayat R, Cox R (1989) Inertia effects on the motion of long slender bodies. J Fluid Mech 209:435–462

    Article  MathSciNet  Google Scholar 

  • Liu K, Wu T, Wang X et al (2019) Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ Sci Technol 53(18):10612–10619

    Article  Google Scholar 

  • Lopez D, Guazzelli E (2017) Inertial effects on fibers settling in a vortical flow. Phys Rev Fluids 2(2):024306

    Article  Google Scholar 

  • Marchetti B, Raspa V, Lindner A et al (2018) Deformation of a flexible fiber settling in a quiescent viscous fluid. Phys Rev Fluids 3(10):104102

    Article  Google Scholar 

  • McNown JS, Malaika J (1950) Effects of particle shape on settling velocity at low reynolds numbers. EOS Trans Am Geophys Union 31(1):74–82

    Article  Google Scholar 

  • Michaelides EE, Feng Z (2023) Review—drag coefficients of non-spherical and irregularly shaped particles. J Fluids Eng 145(6):060801

    Article  Google Scholar 

  • Napper IE, Parker-Jurd FNF, Wright SL et al (2023) Examining the release of synthetic microfibres to the environment via two major pathways: atmospheric deposition and treated wastewater effluent. Sci Total Environ 857:159317

    Article  Google Scholar 

  • Nguyen TH, Kieu-Le TC, Tang FH et al (2022) Controlling factors of microplastic fibre settling through a water column. Sci Total Environ 838:156011

    Article  Google Scholar 

  • O’Brien S, Rauert C, Ribeiro F et al (2023) There’s something in the air: a review of sources, prevalence and behaviour of microplastics in the atmosphere. Sci Total Environ 874:162193

    Article  Google Scholar 

  • Rong X, Qi D, He G et al (2008) Single curved fiber sedimentation under gravity. Comput Math Appl 55(7):1560–1567

    Article  MathSciNet  Google Scholar 

  • Roy A, Hamati R, Tierney L et al (2019) Inertial torques and a symmetry breaking orientational transition in the sedimentation of slender fibres. J Fluid Mech 875:576–596

    Article  Google Scholar 

  • Sen S, Mittal S, Biswas G (2009) Steady separated flow past a circular cylinder at low reynolds numbers. J Fluid Mech 620:89–119

    Article  Google Scholar 

  • Soloff S, Adrian R, Liu Z (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8(12):1441

    Article  Google Scholar 

  • Song X, Xu Z, Li G et al (2017) A new model for predicting drag coefficient and settling velocity of spherical and non-spherical particle in Newtonian fluid. Powder Technol 321:242–250

    Article  Google Scholar 

  • Stokes G (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Cambridge Philos Soc 9:8–106

    Google Scholar 

  • Taylor JR, Thompson W (1982) An introduction to error analysis: the study of uncertainties in physical measurements, vol 2. Springer, Cham

    Google Scholar 

  • Ward E, Gordon M, Hanson R et al (2024) Modelling the effect of shape on atmospheric microplastic transport. Atmos Environ 326:120458

    Article  Google Scholar 

  • Wright S, Ulke J, Font A et al (2020) Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int 136:105411

    Article  Google Scholar 

  • Xu X, Nadim A (1994) Deformation and orientation of an elastic slender body sedimenting in a viscous liquid. Phys Fluids 6(9):2889–2893

    Article  Google Scholar 

  • Yang X, Wang Y, Li Y et al (2022) Experimental research on the settling property of slender fiber particles under the influence of multiple factors. Powder Technol 405:117543

    Article  Google Scholar 

  • Yu Z, Yang G, Zhang W (2022) A new model for the terminal settling velocity of microplastics. Mar Pollut Bull 176:113449

    Article  Google Scholar 

  • Zhang J, Choi CE (2022) Improved settling velocity for microplastic fibers: A new shape-dependent drag model. Environ Sci Technol 56(2):962–973

    Article  Google Scholar 

  • Zhang Y, Kang S, Allen S et al (2020) Atmospheric microplastics: a review on current status and perspectives. Earth Sci Rev 203:103118

    Article  Google Scholar 

Download references

Acknowledgements

This project is funded [in part] by the Northern Contaminants Program (CIRNAC, M-61) and the Government of Canada (ECCC, Grants and Contributions Award GCXE21S030).

Funding

This project is funded [in part] by the Northern Contaminants Program (CIRNAC, M-61) and the Government of Canada (ECCC, Grants and Contributions Award GCXE21S030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald E. Hanson.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidi, A., Daramsing, D., Gordon, M.D. et al. Straight and curved cylindrical rods settling in quiescent fluid with application to atmospheric microplastics. Exp Fluids 65, 81 (2024). https://doi.org/10.1007/s00348-024-03819-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-024-03819-8

Navigation