Skip to main content

Advertisement

Log in

Experimental Investigations into the Mechanical and Metallurgical Characteristics of Friction Stir Welded AZ31 Magnesium Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructural and mechanical behavior of a typical HCP material (AZ31 Mg-alloy) during friction stir welding was studied comprehensively for various sets of parameters. EBSD, SEM, XRD and optical microscopy have been used to characterize the microstructural properties of the welded samples, whereas tensile, microhardness and bending tests have been performed for mechanical behavior. The results showed that a large number of twins and second-phase particles (Mg17Al12 and Mg2Si) were induced. The tendency of intermetallic compounds (IMCs) formations, where both orientations of grain and grain boundaries favored its locations. The localized stress state governed the texture variation during the tension test and it was well described by EBSD analysis in terms of the assumed welding temperature. The average grain size in the stirred zone was obtained 15, 13 and 9 µm which were reduced by 32, 41 and 59%, respectively, with increasing travel speed meanwhile, in thermo-mechanically affected zone grain size was found to be 19.6, 18.2 and 13.2 µm which were reduced by 11, 17 and 40%, respectively. The maximum and minimum bending stress was achieved as 320 and 304 MPa and the corresponding bending angle was 41° and 38°, respectively, for the lowest and highest heat input conditions. All the joints fractured in HAZ-base metal regions with the lowest hardness. The weld strength was improved with travel speed due to reduced recrystallized grains in stirred zone at lower heat input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

FSW:

Friction stir welding

IMCs:

Intermetallic compounds

SZ:

Stir zone

TMAZ:

Thermo-mechanically affected zone

HAZ:

Heat-affected zone

TTA:

Tool tilt angle

AS:

Advancing side

HCP:

Hexagonal close packing

TPD:

Tool plunge depth

RS:

Retreating side

DRX:

Dynamic recrystallization

YTS:

Yield tensile strength

UTS:

Ultimate tensile strength

SPD:

Severe plastic deformation

TTS:

Tool travel speed

TRS:

Tool rotational speed

SEM:

Scanning electron microscope

EBSD:

Electron backscatter diffraction

References

  1. D.W. Shu and I.R. Ahmad, Magnesium Alloys: An Alternative for Aluminium in Structural Applications, Adv. Mater. Res., 2011, 168–170, p 1631–1635.

    Google Scholar 

  2. G. Padmanaban and V. Balasubramanian, Fatigue Performance of Pulsed Current Gas Tungsten Arc, Friction Stir and Laser Beam Welded AZ31B Magnesium Alloy Joints, Mater. Des., 2010, 31(8), p 3724–3732.

    Article  CAS  Google Scholar 

  3. K. Singh, G. Singh and H. Singh, Review on Friction Stir Welding of Magnesium Alloys, J. Magnes. Alloy, 2018, 000, p 1–18.

    Google Scholar 

  4. W.J. He, L.L. Zheng, R.L. Xin and Q. Liu, Microstructure-Based Modeling of Tensile Deformation of a Friction Stir Welded AZ31 Mg Alloy, Mater. Sci. Eng. A, 2017, 687, p 63–72.

    Article  CAS  Google Scholar 

  5. S. Rajakumar, A. Razalrose and V. Balasubramanian, Friction Stir Welding of AZ61A Magnesium Alloy: A Parametric Study, Int. J. Adv. Manuf. Technol., 2013, 68(1–4), p 277–292.

    Article  Google Scholar 

  6. W. Yuan and R.S. Mishra, Grain Size and Texture Effects on Deformation Behavior of AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2012, 558, p 716–724.

    Article  CAS  Google Scholar 

  7. D. Liu, R. Xin, H. Yu, Z. Liu, X. Zheng and Q. Liu, Comparative Examinations on the Activity and Variant Selection During Tension and Compression of Magnesium Alloys, Mater. Sci. Eng. A, 2016, 658, p 229–237.

    Article  CAS  Google Scholar 

  8. W. Zhang, L.L. Tan, D.R. Ni, J.X. Chen, Y.C. Zhao, L. Liu, C.J. Shuai, K. Yang, A. Atrens and M.C. Zhao, Effect of Grain Refinement and Crystallographic Texture Produced by Friction Stir Processing on the Biodegradation Behavior of a Mg-Nd-Zn Alloy, J. Mater. Sci. Technol., 2019, 35, p 777–783.

    Article  CAS  Google Scholar 

  9. R.S. Mishra and Z.M. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50, p 1–78.

    Article  Google Scholar 

  10. V.P. Singh, S.K. Patel and B. Kuriachen, Mechanical and Microstructural Properties Evolutions of Various Alloys Welded Through Cooling Assisted Friction-Stir Welding: A Review, Intermetallics, 2021, 133(2), p 107122.

    Article  CAS  Google Scholar 

  11. S.K. Patel, V.P. Singh, B.S. Roy and B. Kuriachen, Recent Research Progresses in Al-7075 Based In-Situ Surface Composite Fabrication Through Friction Stir Processing: A Review, Mater Sci Eng B., 2020, 262(3), p 114708.

    Article  CAS  Google Scholar 

  12. S.K. Patel, V.P. Singh and B. Kuriachen, Microstructural, Tribological and Mechanical Properties Evolution of ZrSiO4/A4047 Surface Composite Fabricated through Friction Stir Processing, Trans. Indian Inst. Met., 2019, 72(4), p 1765–1774.

    Article  CAS  Google Scholar 

  13. S.K. Patel, V.P. Singh and B. Kuriachen, Friction Stir Processing of Alloys with Secondary Phase Particles: An Overview, Mater. Manuf. Process., 2019, 34(13), p 1429–1457.

    Article  CAS  Google Scholar 

  14. V.P. Singh, S.K. Patel, N. Kumar and B. Kuriachen, Parametric Effect on Dissimilar Friction Stir Welded Steel-Magnesium Alloys Joints: A Review, Sci. Technol. Weld. Join., 2019, 24(8), p 653–684.

    Article  CAS  Google Scholar 

  15. W. Woo, H. Choo, M.B. Prime, Z. Feng and B. Clausen, Microstructure, Texture and Residual Stress in a Friction-Stir-Processed AZ31B Magnesium Alloy, Acta Mater., 2008, 56, p 1701–1711.

    Article  CAS  Google Scholar 

  16. S.H.C. Park, Y.S. Sato and H. Kokawa, Effect of Micro-Texture on Fracture Location in Friction Stir Weld of Mg Alloy AZ61 During Tensile Test, Scr. Mater., 2003, 49, p 161–166.

    Article  CAS  Google Scholar 

  17. B. Sahoo, D. Narsimhachary and J. Paul, Tribological Behavior of Solid-State Processed Al-1100/GNP Surface Nanocomposites, J. Mater. Eng. Perform., 2018, 27(12), p 6529–6544.

    Article  CAS  Google Scholar 

  18. W. Yuan, R.S. Mishra, B. Carlson, R.K. Mishra, R. Verma and R. Kubic, Effect of Texture on the Mechanical Behavior of Ultrafine Grained Magnesium Alloy, Scr. Mater., 2011, 64, p 580–583.

    Article  CAS  Google Scholar 

  19. W. Xunhong and W. Kuaishe, Microstructure and Properties of Friction Stir Butt Welded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2006, 431, p 114–117.

    Article  Google Scholar 

  20. W. Yuan, R.S. Mishra, B. Carlson, R. Verma and R.K. Mishra, Material Flow and Microstructural Evolution During Friction Stir Spot Welding of AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2012, 543, p 200–209.

    Article  CAS  Google Scholar 

  21. A. Mohan, W. Yuan and R.S. Mishra, High Strain Rate Superplasticity in Friction Stir Processed Ultrafine Grained Mg–Al–Zn Alloys, Mater. Sci. Eng. A, 2013, 562, p 69–76.

    Article  CAS  Google Scholar 

  22. R. Xin, D. Liu, B. Li, L. Sun, Z. Zhou and Q. Liu, Mechanisms of Fracture and Inhomogeneous Deformation on Traverse Tensile Test of Friction-Stir-Processed AZ31 Mg Alloy, Mater. Sci. Eng. A, 2013, 565, p 333–341.

    Article  CAS  Google Scholar 

  23. R. Xin, L. Sun, D. Liu, Z. Zhou and Q. Liu, Effect of Subsequent Tension and Annealing on Microstructure Evolution and Strength Enhancement of Friction Stir Welded Mg Alloys, Mater. Sci. Eng. A, 2014, 602, p 1–10.

    Article  CAS  Google Scholar 

  24. C.I. Chang, C.J. Lee and J.C. Huang, Relationship Between Grain Size and Zener-Hollomon Parameter During Friction Stir Processing in AZ31 Mg Alloys, Scr. Mater., 2004, 51, p 509–514.

    Article  CAS  Google Scholar 

  25. Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin and J.C. Huang, Texture and Weak Grain Size Dependence in Friction Stir Processed Mg-Al-Zn Alloy, Scr. Mater., 2006, 55, p 637–640.

    Article  CAS  Google Scholar 

  26. T. Das, R. Das and J. Paul, Resistance Spot Welding of Dissimilar AISI-1008 Steel/Al-1100 Alloy Lap Joints with a Graphene Interlayer, J. Manuf. Process., 2020, 53, p 260–274.

    Article  Google Scholar 

  27. L. Commin, M. Dumont, J.E. Masse and L. Barrallier, Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters, Acta Mater., 2009, 57, p 326–334.

    Article  CAS  Google Scholar 

  28. W. Woo, H. Choo, D. Brown, P. Liaw and Z. Feng, Texture Variation and its Influence on the Tensile Behavior of a Friction-Stir Processed Magnesium Alloy, Scripta Mater., 2006, 54, p 1859–1864.

    Article  CAS  Google Scholar 

  29. S.H.C. Park, Y.S. Sato and H. Kokawa, Basal Plane Texture and Flow Pattern in Friction Stir Weld of a Magnesium Alloy, Metall. Mater. Trans. A, 2003, 34, p 987–994.

    Article  Google Scholar 

  30. W. Yuan, S. Panigrahi, J.-Q. Su and R. Mishra, Influence of Grain Size and Texture on Hall-Petch Relationship for a Magnesium Alloy, Scripta Mater., 2011, 65, p 994–997.

    Article  CAS  Google Scholar 

  31. D. Liu, R. Xin, Y. Xiao, Z. Zhou and Q. Liu, Strain Localization in Friction Stir Welded Magnesium Alloy During Tension and Compression Deformation, Mater. Sci. Eng. A, 2014, 609, p 88–91.

    Article  CAS  Google Scholar 

  32. X. Wang and K. Wang, Microstructure and Properties of Friction Stir Butt-Welded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2006, 431, p 114–117.

    Article  Google Scholar 

  33. S.M. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, E. Powidajko, D.C. Weckman and Y. Zhou, Tensile Properties and Strain-Hardening Behavior of Double-Sided Arc Welded and Friction Stir Welded AZ31B Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527, p 2951–2961.

    Article  Google Scholar 

  34. V.P. Singh, S.K. Patel, A. Ranjan and B. Kuriachen, Recent Research Progress in Solid State Friction-Stir Welding of Aluminium-Magnesium Alloys: A Critical Review, J. Market. Res., 2020, 9(3), p 6217–6256.

    CAS  Google Scholar 

  35. S. Ugender, Ugender, Influence of Tool Pin Profile and Rotational Speed on the Formation of Friction Stir Welding Zone in AZ31 Magnesium Alloy, Journal of Magnesium and Alloys, 2018, 6, p 205–213.

    Article  CAS  Google Scholar 

  36. S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi and A.G. Rao, Effect of Welding Processes on Mechanical and Microstructural Characteristics of High Strength Low Alloy Naval Grade Steel Joints, Defence Technology, 2015, 11(3), p 308–317.

    Article  Google Scholar 

  37. A. Heidarzadeh, A. Mohammadzadeh and G. Moeini, Effect of Friction Stir Welding Heat Input on the Microstructure and Tensile Properties of Cu-Zn Alloy Containing Disordered β Phase, J. Market. Res., 2020, 9(5), p 11154–11161.

    Google Scholar 

  38. D. Micallef, D. Camilleri, A. Toumpis, A. Galloway and L. Arbaoui, Local Heat Generation and Material Flow in Friction Stir Welding of Mild Steel Assemblies, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2015, 230(2), p 586–602.

    Google Scholar 

  39. D. Zhang, M. Suzuki and K. Maruyama, Microstructural Evolution of a Heat-Resistant Magnesium Alloy due to Friction Stir Welding, Scripta Mater., 2005, 52, p 899–903.

    Article  CAS  Google Scholar 

  40. H.T. Serindag and B.G. Kiral, Friction Stir Welding of AZ31 Magnesium Alloys-A Numerical and Experimental Study, Lat. Am. J. Solids Struct., 2017, 14, p 113–130.

    Article  Google Scholar 

  41. R.L. Xin, B. Li, A.L. Liao, Z. Zhou and Q. Liu, Correlation Between Texture Variation and Transverse Tensile Behavior of Friction-Stir-Processed AZ31 Mg Alloy, Metall. Mater. Trans. A, 2012, 43, p 2500–2508.

    Article  CAS  Google Scholar 

  42. W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.N. Yuan, L.Y. Huang, H.L. Yu, K. Qiao and K.S. Wang, Friction Stir Processing of Magnesium Alloys: A Review, Acta Metall. Sin. Engl. Lett., 2020, 33, p 43–57.

    Article  CAS  Google Scholar 

  43. M. Azizieh, A.S. Alavijeh, M. Abbasi, Z. Balak and H. Kim, Mechanical Properties and Microstructural Evaluation of AA1100 to AZ31 Dissimilar Friction Stir Welds, Mater. Chem. Phys., 2016, 170, p 251–260.

    Article  CAS  Google Scholar 

  44. A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel and H. El Kadiri, Nucleation and Preferential Growth Mechanism of Recrystallization Texture in High Purity Binary Magnesium-Rare Earth Alloys, Acta Mater., 2017, 138, p 27–41.

    Article  CAS  Google Scholar 

  45. G.H. Li, L. Zhou, H.F. Zhang, G.Z. Guo, S.F. Luo and N. Guo, Evolution of Grain Structure, Texture and Mechanical Properties of a Mg-Zn-Zr Alloy in Bobbin Friction Stir Welding, Mater. Sci. Eng., A, 2021, 799, p 140267.

    Article  CAS  Google Scholar 

  46. Y. Xu, L. Hu and Y. Sun, Deformation Behaviour and Dynamic Recrystallization of AZ61 Magnesium Alloy, J. Alloys Compd., 2013, 580, p 262–269.

    Article  CAS  Google Scholar 

  47. A. Galiyev, R. Kaibyshev and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49, p 1199–1207.

    Article  CAS  Google Scholar 

  48. A.G. Beer and M.R. Barnett, Microstructural Development During Hot Working of Mg-3Al-1Zn, Metall. Mater. Trans. A, 2007, 38, p 1856.

    Article  Google Scholar 

  49. T. Al-Samman and G. Gottstein, Dynamic Recrystallization During High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, 2008, 490, p 411–420.

    Article  Google Scholar 

  50. P.J. Hurley and F.J. Humphreys, The Application of EBSD to the Study of Substructural Development in a Cold Rolled Single-Phase Aluminium Alloy, Acta Mater., 2003, 51(4), p 1087–1102.

    Article  CAS  Google Scholar 

  51. B. Li, A. Godfrey, Q.C. Meng, Q. Liu and N. Hansen, Microstructural Evolution of IF-Steel During Cold Rolling, Acta Mater., 2004, 52(4), p 1069–1081.

    Article  CAS  Google Scholar 

  52. D.A. Hughes and N. Hansen, High Angle Boundaries Formed by Grain Subdivision Mechanisms, Acta Mater., 1997, 45(9), p 3871–3886.

    Article  CAS  Google Scholar 

  53. W.X. Wu, L. Jin, Z.Y. Zhang, W.J. Ding and J. Dong, Grain Growth and Texture Evolution During Annealing in an Indirect-Extruded Mg-1Gd Alloy, J. Alloy. Compd., 2014, 585, p 111–119.

    Article  CAS  Google Scholar 

  54. S.M. Chowdhury, D.L. Chen, S.D. Bhole and X. Cao, Tensile Properties of a Friction Stir Welded Magnesium Alloy: Effect of Pin Tool Thread Orientation and Weld Pitch, Mater. Sci. Eng. A, 2010, 527(21–22), p 6064–6075.

    Article  Google Scholar 

  55. J. Yang, B.L. Xiao, D. Wang and Z.Y. Ma, Effects of Heat Input on Tensile Properties and Fracture Behavior Of Friction Stir Welded Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2010, 527(3), p 708–714.

    Article  Google Scholar 

  56. T.U. Seidel and A.P. Reynolds, Visualization of the Material Flow in AA2195 Friction-Stir Welds Using a Marker Insert Technique, Metall. Mater. Trans. A, 2001, 32, p 2879–2884.

    Article  Google Scholar 

  57. T. Shinoda, Proceedings of the Third International Symposium on Friction Stir Welding, Kobe, Japan, 2001

  58. N. Afrin, D.L. Chen, X. Cao and M. Jahazi, Microstructure and Tensile Properties of Friction Stir Welded AZ31B Magnesium Alloy, Mater. Sci. Eng. A, 2008, 472, p 179–186.

    Article  Google Scholar 

  59. L. Jiang, JJ. Jonas, AA. Luo, AK. Sachdev, S. Godet, in Magnesium Technology, ed. by AA. Luo, NR. Neelameggham, RS. Beals, (2006), pp. 233–238.

  60. H. Takuda, S. Kikuchi, N. Yoshida and H. Okahara, Tensile Properties and Press Formability of a Mg-9Li-1Y Alloy Sheet, Mater. Trans., 2003, 44, p 2266–2270.

    Article  CAS  Google Scholar 

  61. X. Cao and M. Jahazi, Effect of Welding Speed on the Quality of Friction Stir Welded Butt Joints of a Magnesium Alloy, Mater. Des., 2009, 30, p 2033–2042.

    Article  CAS  Google Scholar 

  62. Y.M. Wang and E. Ma, Strain Hardening, Strain Rate Sensitivity, and Ductility of Nanostructured Metals, Mater. Sci. Eng. A, 2004, 375–377, p 46–52.

    Article  Google Scholar 

  63. H.J. Liu, L. Zhou and Q.W. Liu, Microstructural Characteristics and Mechanical Properties of friction Stir Welded Joints of Ti-6Al-4V Titanium Alloy, Mater. Des., 2010, 31(3), p 1650–1655.

    Article  CAS  Google Scholar 

  64. D. Liu, R. Xin, Y. Hongni, Z. Liu, X. Zheng and Q. Liu, Comparative Examinations on the Activity and Variant Selection of Twinning During Tension and Compression of Magnesium Alloys, Mater. Sci. Eng. A, 2016, 658, p 229–237.

    Article  CAS  Google Scholar 

  65. Z. Liu, D. Liu, J. Xu, X. Zheng, Q. Liu and R. Xin, Microstructural Investigation and Mechanical Properties of Dissimilar Friction Stir Welded Magnesium Alloys, Sci. Tech. Weld. Join., 2015, 20, p 264–270.

    Article  CAS  Google Scholar 

  66. D. Liu, R. Xin, L. Sun, Z. Zhou and Q. Liu, Influence of Sampling Design on Tensile Properties and Fracture Behavior of Friction Stir Welded Magnesium Alloys, Mater. Sci. Eng. A, 2013, 576, p 207–216.

    Article  CAS  Google Scholar 

  67. D. Liu, R. Xin, Z. Li, Z. Liu, X. Zheng and Q. Liu, The Activation of Twinning and Texture Evolution During Bending of Friction Stir Welded Magnesium Alloys, Mater. Sci. Eng. A, 2015, 646, p 145–153.

    Article  CAS  Google Scholar 

  68. A. Dorbane, G. Ayoub, B. Mansoor, R. Hamade, G. Kridli, R. Shabadi et al., Microstructural Observations and Tensile Fracture Behavior of FSW Twin Roll Cast AZ31 Mg Sheets, Mater. Sci. Eng. A, 2016, 649, p 190–200.

    Article  CAS  Google Scholar 

  69. S. Lim, S. Kim, C.G. Lee, C.D. Yim and S.J. Kim, Tensile Behavior of Friction-Stir-Welded AZ31-H24 Mg Alloy, Metall. Mater. Trans. A, 2005, 36, p 1609–1612.

    Article  Google Scholar 

  70. D.J. Liu, R.L. Xin, X. Zheng, Z. Zhou and Q. Liu, Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Mg Alloys of ZK60-AZ31, Mater. Sci. Eng. A, 2013, 561, p 419–426.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors appreciate the FSW and CRF Lab, IIT Kharagpur, India for providing the facilities for preparation of this work. Also special thanks should be given to Prof. S.K Pal (IIT Khargpur, India), Dr. Raju Prasad Mahto (NIT Surat, India) and Dr. Deepak Chauhan (Carnegie Mellon University, USA) for their intellectual and practical supports during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Kuriachen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.P., Kuriachen, B. Experimental Investigations into the Mechanical and Metallurgical Characteristics of Friction Stir Welded AZ31 Magnesium Alloy. J. of Materi Eng and Perform 31, 9812–9828 (2022). https://doi.org/10.1007/s11665-022-07055-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07055-1

Keywords

Navigation