Skip to main content

Advertisement

Log in

Improving microstructural and mechanical properties of dissimilar friction stir welded AZ61/AZ40 joint

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This study focuses on the microstructure evolution and mechanical properties of dissimilar magnesium alloy friction stir welded AZ61/AZ40 joints achieved at different traverse speeds (50–130 mm/min) and a constant rotation speed (1200 rpm). The surfaces of the welds are relatively smooth without any obvious surface defects except for the FSW joint at a traverse speed of 50 mm/min. The nugget zone (NZ) is bowl-shaped due to the tapered probe. The Mg-based alloys were sufficiently mixed with each other in the NZ, and the interface was irregular. In addition, the NZ exhibits fine equiaxed grains due to dynamic recrystallization (DRX), and the grain size decreases with increasing traverse speed. The welded joints show a relatively discontinuous microhardness, and the lowest microhardness occurs in the thermo-mechanically affected zone (TMAZ) on the advancing side (AS). The strength increases as the traverse speed increases from 50 to 70 mm/min and then decreases as the traverse speed increases continually. An exceptionally high tensile strength of 235 MPa was achieved at a traverse speed of 70 mm/min. The combined effects of high-density dislocations and fine second phases (η-Al8Mn5 and β-Mg17Al12 phase) promote mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data and code availability

All data generated or used during the study are included in the submitted article.

References

  1. Mordike BL, Ebert T. Magnesium: properties—applications—potential. Mater Sci Eng A. 2001;302(1):37–45.

    Article  Google Scholar 

  2. Nie JF. Precipitation and hardening in magnesium alloys. Metall Mater Trans A. 2012;43:3891–939.

    Article  CAS  Google Scholar 

  3. Pan H, Ren Y, Fu H, Zhao H, Wang L, Meng X, Qin G. Recent developments in rare-earth free wrought magnesium alloys having high strength: a review. J Alloy Compd. 2016;663:321–31.

    Article  CAS  Google Scholar 

  4. Singh K, Singh G, Singh H. Review on friction stir welding of magnesium alloys. J Magnes Alloys. 2018;6(4):399–416.

    Article  CAS  Google Scholar 

  5. Li W, Niu PL, Yan SR, Patel V, Wen Q. Improving microstructural and tensile properties of AZ31B magnesium alloy joints by stationary shoulder friction stir welding. J Manuf Process. 2019;37:159–67.

    Article  CAS  Google Scholar 

  6. Liu Z, Xin R, Wu X, Liu D, Liu Q. Improvement in the strength of friction-stir-welded ZK60 alloys via post-weld compression and aging treatment. Mater Sci Eng A. 2018;712:493–501.

    Article  CAS  Google Scholar 

  7. Commin L, Dumont M, Masse JE, Barrallier L. Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater. 2009;57(2):326–34.

    Article  ADS  CAS  Google Scholar 

  8. Heidarzadeh A, Mironov S, Kaibyshev R, Çam G, Simar A, Gerlich A, Withers PJ. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117:100752.

    Article  CAS  Google Scholar 

  9. Wang W, Zhang W, Chen W, Yang J, Zhang L, Wang E. Homogeneity improvement of friction stir welded ZK61 alloy sheets in microstructure and mechanical properties by multi-pass lowered-temperature rolling. Mater Sci Eng A. 2017;703:17–26.

    Article  CAS  Google Scholar 

  10. Zhang J, Liu H, Chen X, Zou Q, Huang G, Jiang B, Pan F. Deformation characterization, twinning behavior and mechanical properties of dissimilar friction-stir-welded AM60/AZ31 alloys joint during the three-point bending. Acta Metallurgica Sinica (English Letters). 2021;1–18.

  11. Templeman Y, Hamu GB, Meshi L. Friction stir welded AM50 and AZ31 Mg alloys: microstructural evolution and improved corrosion resistance. Mater Charact. 2017;126:86–95.

    Article  CAS  Google Scholar 

  12. He W, Zheng L, Xin R, Liu Q. Microstructure-based modeling of tensile deformation of a friction stir welded AZ31 Mg alloy. Mater Sci Eng A. 2017;687:63–72.

    Article  CAS  Google Scholar 

  13. Luo XC, Kang LM, Liu HL, Li ZJ, Liu YF, Zhang DT, Chen DL. Enhancing mechanical properties of AZ61 magnesium alloy via friction stir processing: effect of processing parameters. Mater Sci Eng A. 2020;797: 139945.

    Article  CAS  Google Scholar 

  14. Yang J, Ni DR, Wang D, Xiao BL, Ma ZY. Friction stir welding of as-extruded Mg–Al–Zn alloy with higher Al content. Part I: formation of banded and line structures. Mater Charact. 2014;96:142–50.

    Article  CAS  Google Scholar 

  15. Huang Y, Wang Y, Meng X, Wan L, Cao J, Zhou L, Feng J. Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys. J Mater Process Technol. 2017;249:331–8.

    Article  CAS  Google Scholar 

  16. Lee CY, Lee WB, Yeon YM, Jung SB. Friction stir welding of dissimilar formed Mg alloys (AZ31/AZ91). Mater Sci Forum. 2005;486:249–52.

    Article  Google Scholar 

  17. Liu D, Nishio H, Nakata K. Anisotropic property of material arrangement in friction stir welding of dissimilar Mg alloys. Mater Des. 2011;32(10):4818–24.

    Article  CAS  Google Scholar 

  18. Sunil BR, Reddy GPK, Mounika ASN, Sree PN, Pinneswari PR, Ambica I, Amarnadh P. Joining of AZ31 and AZ91 Mg alloys by friction stir welding. J Magnes Alloys. 2015;3(4):330–4.

    Article  Google Scholar 

  19. Liu D, Xin R, Zheng X, Zhou Z, Liu Q. Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60–AZ31. Mater Sci Eng A. 2013;561:419–26.

    Article  CAS  Google Scholar 

  20. Luo C, Li X, Song D, Zhou N, Li Y, Qi W. Microstructure evolution and mechanical properties of friction stir welded dissimilar joints of Mg–Zn–Gd and Mg–Al–Zn alloys. Mater Sci Eng A. 2016;664:103–13.

    Article  CAS  Google Scholar 

  21. Klenam DEP, Ogunwande GS, Omotosho T, Ozah B, Maledi NB, Hango SI, Bodunrin MO. Welding of magnesium and its alloys: an overview of methods and process parameters and their effects on mechanical behaviour and structural integrity of the welds. Manuf Rev. 2021;8:29.

    Google Scholar 

  22. Huetsch LL, Herzberg K, Dos Santos JF, Huber N. A study on local thermal and strain phenomena of high-speed friction stir-processed Mg AZ31. Weld World. 2013;57(4):515–21.

    Article  CAS  Google Scholar 

  23. Shang Q, Ni DR, Xue P, Xiao BL, Ma ZY. Evolution of local texture and its effect on mechanical properties and fracture behavior of friction stir welded joint of extruded Mg-3Al-1Zn alloy. Mater Charact. 2017;128:14–22.

    Article  CAS  Google Scholar 

  24. Xie L, Zhu X, Sun W, Jiang C, Wang P, Yang S, Song Y. Investigations on the material flow and the influence of the resulting texture on the tensile properties of dissimilar friction stir welded ZK60/Mg–Al–Sn–Zn joints. J Mater Res Technol. 2022;17:1716–30.

    Article  CAS  Google Scholar 

  25. Zhang H, Wang HY, Wang JG, Rong J, Zha M, Wang C, Jiang QC. The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys. J Alloys Compds. 2019;780:312–7.

    Article  CAS  Google Scholar 

  26. Lu S, Qi F, Chen J, Jia XD. Numerical simulation and experiment of temperature field on Mg alloy weld processed by friction-stir welding. J Comput Theor Nanosci. 2012;9(9):1231–5.

    Article  CAS  Google Scholar 

  27. Zhou Z, Yue Y, Ji S, Li Z, Zhang L. Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061–T6 aluminum alloy. Int J Adv Manuf Technol. 2017;88:2135–41.

    Article  Google Scholar 

  28. Guerra M, Schmidt C, McClure JC, Murr LE, Nunes AC. Flow patterns during friction stir welding. Mater Charact. 2002;49(2):95–101.

    Article  CAS  Google Scholar 

  29. Kumar Singh U, Kumar Dubey A. Study of joining performance of dissimilar Mg alloys in friction stir welding. Proc Inst Mech Eng C J Mech Eng Sci. 2021;235(18):3554–62.

    Article  CAS  Google Scholar 

  30. Esparza JA, Davis WC, Trillo EA, Murr LE. Friction-stir welding of magnesium alloy AZ31B. J Mater Sci Lett. 2002;21:917–20.

    Article  CAS  Google Scholar 

  31. Afrin N, Chen DL, Cao X, Jahazi M. Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Mater Sci Eng A. 2008;472(1–2):179–86.

    Article  Google Scholar 

  32. Liu D, Xin R, Zhao L, Hu Y. Effect of textural variation and twinning activity on fracture behavior of friction stir welded AZ31 Mg alloy in bending tests. J Alloy Compd. 2017;693:808–15.

    Article  CAS  Google Scholar 

  33. Hamilton C, Sommers A, Dymek S. A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions. Int J Mach Tools Manuf. 2009;49(3–4):230–8.

    Article  Google Scholar 

  34. Yang J, Xiao BL, Wang D, Ma ZY. Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg–3Al–1Zn alloy. Mater Sci Eng A. 2010;527(3):708–14.

    Article  Google Scholar 

  35. Suhuddin UFHR, Mironov S, Sato YS, Kokawa H, Lee CW. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater. 2009;57(18):5406–18.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Technology Project of Nanchong and Southwest Petroleum University (SWPU) Cooperation (No. 23XNSYSX0003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Wang or Hualin Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, J., Cui, C. et al. Improving microstructural and mechanical properties of dissimilar friction stir welded AZ61/AZ40 joint. Archiv.Civ.Mech.Eng 24, 66 (2024). https://doi.org/10.1007/s43452-024-00876-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00876-y

Keywords

Navigation