Skip to main content
Log in

Correlation Between Texture Variation and Transverse Tensile Behavior of Friction-Stir-Processed AZ31 Mg Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and especially the texture of a friction-stir-processed AZ31 Mg alloy were comprehensively characterized by the electron backscatter diffraction (EBSD) technique. Local texture changed significantly from the base material (BM) to the stir zone (SZ) center. The SZ center exhibited strong basal texture with the \( \left\langle {0001} \right\rangle \) direction parallel to the processing direction (PD), while the \( \left\langle {0001} \right\rangle \) direction from the center to the periphery of the SZ tended to tilt from the PD to the tangential direction (TD). The transverse tensile properties of the processed alloy were reduced compared to the BM due to the inhomogeneous plastic deformation through the specimen length. Necking occurred at the SZ side, and the SZ center suffered the least deformation. A large number of {10-12} extension twins were observed in the SZ side of the deformed specimen, while only a few were in the SZ center. Schmid factor (SF) analyses indicated that most grains in the SZ side were in favorable orientations for extension twinning and basal slip. This might be the main reason why necking and fracture occurred in the SZ side of the friction-stir-processed Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, Dec. 1991, U.S. Patent No. 5,460,317, Oct. 1995.

  2. Y. Li, E.A. Trillo, and L.E. Murr: J. Mater. Sci. Lett., 2000, vol. 19, pp. 1047–51.

    Article  CAS  Google Scholar 

  3. L. Ceschini, I. Boromei, G. Minak, A. Morrri, and F. Tarterini: Compos. Sci. Technol., 2007, vol. 67, pp. 605–15.

    Article  CAS  Google Scholar 

  4. Y.C. Chen and K. Nakata: Scripta Mater., 2008, vol. 58, pp. 433–36.

    Article  CAS  Google Scholar 

  5. A. Scialpi, L.A.C. De Filippis, and P. Cavaliere: Mater. Des., 2007, vol. 28, pp. 1124–29.

    Article  CAS  Google Scholar 

  6. K. Elangovan and V. Balasubramanian: Mater. Sci. Eng. A-Struct., 2007, vol. 459, pp. 7–18.

    Article  Google Scholar 

  7. R.S. Mishra, M.W. Mahoney, S.X. McFaden, N.A. Mara, and A.K. Mukherjee: Scripta Mater., 1999, vol. 42, pp. 163–68.

    Article  Google Scholar 

  8. Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642–58.

    Article  CAS  Google Scholar 

  9. R. Nandan, T. DebRoy, and H. Bhadeshia: Progr. Mater. Sci., 2008, vol. 53, pp. 980–1023.

    Article  CAS  Google Scholar 

  10. L. Commin, M. Dumont, J.E. Masseand, and L. Barrallier: Acta Mater., 2009, vol. 57, pp. 326–34.

    Article  CAS  Google Scholar 

  11. B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, and M.A. Omar: J. Mater. Process. Technol., 2007, vol. 191, pp. 77–81.

    Article  CAS  Google Scholar 

  12. J.A. Esparza, W.C. Davis, E.A. Trillo, and L.E. Murr: J. Mater. Sci. Lett., 2002, vol. 21, pp. 917–20.

    Article  CAS  Google Scholar 

  13. S. Park, Y. Sato, and H. Kokawa: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 987–94.

    Article  CAS  Google Scholar 

  14. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi: Mater. Sci. Eng. A-Struct., 2008, vol. 472, pp. 179–86.

    Article  Google Scholar 

  15. G. Bhargava, W. Yuan, S.S. Webb, and R.S. Mishra: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 13–17.

    Article  CAS  Google Scholar 

  16. C.I. Chang, X.H. Du, and J.C. Huang: Scripta Mater., 2007, vol. 57, pp. 209–12.

    Article  CAS  Google Scholar 

  17. Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, and J.C. Huang: Scripta Mater., 2006, vol. 55, pp. 637–40.

    Article  CAS  Google Scholar 

  18. J. Yang, B.L. Xiao, D. Wang, and Z.Y. Ma: Mater. Sci. Eng. A-Struct., 2010, vol. 527, pp. 708–14.

    Article  Google Scholar 

  19. W. Woo, H. Choo, D.W. Brown, P.K. Liaw, and Z. Feng: Scripta Mater., 2006, vol. 54, pp. 1859–64.

    Article  CAS  Google Scholar 

  20. W. Woo, H. Choo, M.B. Prime, Z. Feng, and B. Clausen: Acta Mater., 2008, vol. 56, pp. 1701–11.

    Article  CAS  Google Scholar 

  21. S.H.C. Park, Y.S. Sato, and H. Kokawa: Scripta Mater., 2003, vol. 49, pp. 161–66.

    Article  CAS  Google Scholar 

  22. U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, and C.W. Lee: Acta Mater., 2009, vol. 57, pp. 5406–18.

    Article  CAS  Google Scholar 

  23. R.L. Xin, B. Li, and Q. Liu: Mater. Sci. Forum, 2010, vols. 654–656, pp. 1195–1200.

  24. J. Koike: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1689–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Natural Science Foundation of China (Grant No. 50890172), by the National Basic Research Program of China (“973” Project) (Grant No. 2007CB613703), and by the Fundamental Research Funds for the Central Universities (Project No. CDJZR10130015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renlong Xin.

Additional information

Manuscript submitted May 5, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, R., Li, B., Liao, A. et al. Correlation Between Texture Variation and Transverse Tensile Behavior of Friction-Stir-Processed AZ31 Mg Alloy. Metall Mater Trans A 43, 2500–2508 (2012). https://doi.org/10.1007/s11661-012-1080-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1080-1

Keywords

Navigation