Skip to main content

Advertisement

Log in

Microstructural Evolution and Properties of 24CrNiMoY Alloy Steel Fabricated by Selective Laser Melting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

24CrNiMoY alloy steel samples were fabricated by selective laser melting (SLM), and a phase transformation model was established to study the alloy steel microstructural evolution. Meanwhile, microhardness and tensile properties of 24CrNiMoY alloy steel prepared by different laser energy densities (Ev) were investigated. Results indicate that the microstructural evolution of 24CrNiMoY alloy steel is consistent with the phase transformation model. The main microstructure changed from martensite to bainite with the increase in thermal cycle numbers. In addition, a suitable Ev plays an important role in refining the bainite structure and improving the alloy steel properties. When the Ev decreases from 210 to 140 J/mm3, the bainite lath width reduces from 1.7 to 0.6 μm. Simultaneously, the relative density, tensile strength and microhardness of the fabricated samples increase first and decrease later. 24CrNiMoY alloy steel sample prepared by 160 J/mm3 has fine mechanical properties: The tensile strength is 850 MPa and microhardness is 360 HV0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling And Diagnostics, Addit. Manuf., 2015, 8, pp 6–62

    Google Scholar 

  2. Y.H. Wang, X.Z. Chen, and S.V. Konovalov, Additive Manufacturing Based on Welding Arc: A Low-Cost Method, J. Surf. Int., 2017, 11(6), pp 1317–1328

    CAS  Google Scholar 

  3. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, and L.E. Loh, Review of Selective Laser Melting: Materials and Applications, Appl. Phys. Rev., 2015, 2(4), p 18–187

    Article  Google Scholar 

  4. R. Acharya, J.A. Sharon, and A. Staroselsky, A Prediction of Microstructure in Laser Powder Bed Fusion Process, Acta Mater., 2017, 124, pp 360–371

    Article  CAS  Google Scholar 

  5. T. Persenot, A. Burr, G. Martin, J.Y. Buffiere, R. Dendievel, and E. Maire, Effect of Build Orientation on the Fatigue Properties of As-built Electron Beam Melted Ti-6Al-4V alloy, Int. J. Fatigue, 2019, 118, pp 65–76

    Article  CAS  Google Scholar 

  6. H.Y. Yue, Y.Y. Chen, X.P. Wang, and F.T. Kong, Effect of Beam Current on Microstructure, Phase, Grain Characteristic and Mechanical Properties of Ti-47Al-2Cr-2Nb Alloy Fabricated by Selective Electron Beam Melting, J. Alloy. Compd., 2018, 750, pp 617–625

    Article  CAS  Google Scholar 

  7. E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, and K.N. Amato, Metal Fabrication by Additive Manufacturing using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol., 2012, 28(1), pp 1–14

    Article  CAS  Google Scholar 

  8. W. Xu, E.W. Lui, A. Pateras, M. Qia, and M. Brandt, In situ Tailoring Microstructure in Additively Manufactured Ti-6Al-4V for Superior Mechanical Performance, Acta Mater., 2017, 125, pp 390–400

    Article  CAS  Google Scholar 

  9. H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, and B.E. Stucker, MicroStructures and Mechanical Properties of Ti6Al4 V Parts Fabricated by Selective Laser Melting and Electron Beam Melting, J. Mater. Eng. Perform., 2013, 22(12), pp 3872–3883

    Article  CAS  Google Scholar 

  10. J.J. Yang, H.C. Yu, H.H. Yang, F.Z. Li, Z.M. Wang, and X.Y. Zeng, Prediction of Microstructure in Selective Laser Melted Ti-6Al-4 V Alloy by Cellular Automaton, J. Alloys Compd., 2018, 748(5), pp 281–290

    Article  CAS  Google Scholar 

  11. L. Zheng, Y. Liu, S. Sun, and H. Zhang, Selective Laser Melting of Al-8.5Fe-1.3 V-1.7Si Alloy: Investigation on the Resultant Microstructure and Hardness, Chin. J. Aeronaut., 2015, 28(2), p 564–569

    Article  Google Scholar 

  12. E. Yasa and J.P. Kruth, Microstructural Investigation of Selective Laser Melting 316L Stainless Steel Parts Exposed to Laser Re-melting, Procedia Eng., 2011, 19, pp 389–395

    Article  CAS  Google Scholar 

  13. W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, and V. Hansen, Investigation of Effects of Process Parameters on Microstructure and Hardness of SLM Manufactured ss316L, J. Alloys Compd., 2018, 740, pp 910–925

    Article  CAS  Google Scholar 

  14. J.J. Yan, D.L. Zheng, H.X. Li, X. Jia, J.F. Sun, Y.L. Li, M. Qian, and M. Yan, Selective Laser Melting of H13: Microstructure and Residual Stress, J. Mater. Sci., 2017, 52(20), pp 12476–12485

    Article  CAS  Google Scholar 

  15. Z. Hu, H. Zhu, H. Zhang, and H. Zeng, Experimental Investigation on Selective Laser Melting of 17-4PH Stainless Steel, Opt. Laser Technol., 2015, 87, pp 17–25

    Article  Google Scholar 

  16. J. Sander, J. Hufenbach, M. Bleckmann, L. Giebeler, H. Wendrock, S. Oswald, T. Gemming, J. Eckert, and U. Kühn, Selective Laser Melting of Ultra-High-Strength TRIP Steel: Processing, Microstructure, and Properties, J. Mater. Sci., 2017, 52(9), p 4944–4956

    Article  CAS  Google Scholar 

  17. T. Vilaro, C. Colin, J.D. Bartout, L. Nazé, and M. Sennour, Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickel-base Superalloy, Mater. Sci. Eng. A, 2012, 534(1), pp 446–451

    Article  CAS  Google Scholar 

  18. G.L. Yin, S.Y. Chen, Y.Y. Liu, J. Liang, C.S. Liu, and Z. Kuang, Effect of Nano-Y2O3 on Microstructure and Crack Formation in Laser Direct-deposited In situ Particle-Reinforced Fe-based Coatings, J. Mater. Eng. Perform., 2018, 27, pp 1–14

    Article  Google Scholar 

  19. B. Ai, X. Cheng, T. Kürner, Z. Zhong, K. Guan, and R. He, Challenges toward Wireless Communications for High-Speed Railway, IEEE. T. Intell. Transp., 2014, 15(5), pp 2143–2158

    Article  Google Scholar 

  20. C.F. Shi, S.Y. Chen, Q. Xia, and Z. Li, Preparation and Printability of 24CrNiMo Alloy Steel Powder for Selective Laser Melting Fabrcating Brake Disc, Powder Metall., 2017, 61(1), pp 1–8

    Google Scholar 

  21. M. Yin, L. Bertolini, and J. Duan, The Effects of the High-Speed Railway on Urban Development: International Experience and Potential Implications for China, Program Plann., 2015, 98, pp 1–52

    Article  Google Scholar 

  22. Z. Chen, Z.Y. Wei, P. Wei, S.G. Chen, B.H. Lu, J. Du, J.F. Li, and S.Z. Zhang, Experimental Research on Selective Laser Melting AlSi10 Mg Alloys: Process, Densification and Performance, J. Mater. Eng. Perform., 2017, 26(12), pp 1–9

    Article  Google Scholar 

  23. I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, and A. Esnaola, Study of Mechanical Properties of AISI, 316 Stainless Steel Processed by “Selective Laser Melting”, Following Different Manufacturing Strategies, Int. J. Adv. Manuf. Technol., 2010, 51(5–8), pp 639–647

    Article  Google Scholar 

  24. B.A. Mangour, D. Grzesiak, T. Borkar, and M.Y. Jenn, Densification Behavior, Microstructural Evolution, and Mechanical Properties of TiC/316L Stainless Steel Nanocomposites Fabricated by Selective Laser Melting, Mater. Des., 2018, 138(5), p 119–128

    Article  Google Scholar 

  25. R.D. Li, Y.S. Shi, Z.G. Wang, L. Wang, J.H. Liu, and W. Jiang, Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting, Appl. Surf. Sci., 2010, 256(13), pp 4350–4356

    Article  CAS  Google Scholar 

  26. Y. Guo, Z. Li, C. Yao, K. Zhang, F. Lu, and K. Feng, Microstructure Evolution of Fe-based Nanostructured Bainite Coating by Laser Cladding, Mater. Des., 2014, 63(21), pp 100–108

    Article  CAS  Google Scholar 

  27. J. Liu, J. Li, X. Cheng, and H. Wang, Microstructural Evolution of AerMet100 Steel Coating on 300 M Steel Fabricated by Laser Cladding Technique, Metall. Mater. Trans. A, 2018, 49(2), p 595–603

    Article  CAS  Google Scholar 

  28. M.W. Wei, S.Y. Chen, L.Y. Xi, J. Liang, and C.S. Liu, Selective Laser Melting of 24CrNiMo Steel for Brake Disc: Fabrication Efficiency, Microstructure Evolution, and Properties, Opt. Laser Technol., 2018, 107, pp 99–109

    Article  CAS  Google Scholar 

  29. F.G. Liu, X. Lin, M.H. Song, H.Y. Yang, Y.Y. Zhang, L.L. Wang, and W.D. Huang, Microstructure and Mechanical Properties of Laser Solid Formed 300 m Steel, J. Alloys Compd., 2015, 621, pp 35–41

    Article  CAS  Google Scholar 

  30. M. Shaha and S.D. Bakshi, Three-body Abrasive Wear of Carbide-free Bainite, Martensite and Bainite–martensite Structure of Similar Hardness, Wear, 2018, 402–403, p 207–215

    Article  Google Scholar 

  31. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Additive Manufacturing of Strong and Ductile Ti-6Al-4V by Selective Laser Melting via In situ Martensite Decomposition, Acta Mater., 2015, 85, pp 74–84

    Article  CAS  Google Scholar 

  32. T.L. Fu, R.Q. Wang, Z.D. Wang, G.D. Wang, and M.T. Wang, Construction and Application of Quenching Critical Cooling Rate Model, J. Iron. Steel Res. Int., 2010, 17(3), p 40–45

    Article  Google Scholar 

  33. B. Li, P. Xu, F. Lu, H. Gong, H. Cui, and C. Liu, Microstructure Characterization of Fiber Laser Welds of s690ql High-Strength Steels, Metall. Mater. Trans. B, 2018, 49(1), pp 225–237

    Article  CAS  Google Scholar 

  34. M.M. Ma, Comparison of Laser Additive Manufacturing Technology Basics of Two Typical Metal Parts, Ph.D. Thesis, Huazhong University of Science and Technology, 2016

  35. S. Berretta, Y. Wang, R. Davies, and O.R. Ghita, Polymer Viscosity, Particle Coalescence and Mechanical Performance in High-Temperature Laser Sintering, J. Mater. Sci., 2016, 51(10), pp 4778–4794

    Article  CAS  Google Scholar 

  36. E.V. Pereloma, F. Al-Harbi, and A.A. Gazder, The Crystallography of Carbide-Free Bainites in Thermo-Mechanically Processed Low Si Transformation-Induced Plasticity Steels, J. Alloys Compd., 2014, 615, pp 96–110

    Article  CAS  Google Scholar 

  37. L.Y. Lan, X.W. Kong, and C.L. Qiu, Characterization of Coarse Bainite Transformation in Low Carbon Steel During Simulated Welding Thermal Cycles, Mater. Charact., 2015, 105, pp 95–103

    Article  CAS  Google Scholar 

  38. J. Sander, L. Giebeler, U. Kühn, and J. Eckert, Microstructure and Properties of FeCrMoVC Tool Steel Produced by Selective Laser Melting, Mater. Des., 2016, 89, pp 335–341

    Article  CAS  Google Scholar 

  39. F.M. Gao, Theoretical Model of Hardness Anisotropy in Brittle Materials, J. Appl. Phys., 2012, 112(2), pp 023506

    Article  Google Scholar 

  40. A. Augustin, P. Huilgol, K.R. Udupa, and K.U. Bhat, Effect of Current Density During Electrodeposition on Microstructure and Hardness of Textured Cu Coating in the Application of Antimicrobial Al Touch Surface, J. Mech. Behav. Biomed., 2016, 63, pp 352–360

    Article  CAS  Google Scholar 

  41. S.L. Long, Y.L. Liang, Y. Jiang, Y. Liang, M. Yang, and Y.L. Yi, Effect of Quenching Temperature on Martensite Multi-Level Microstructures and Properties of Strength and Toughness in 20CrNi2Mo Steel, Mat. Sci. Eng. A, 2016, 676, pp38–47

    Article  CAS  Google Scholar 

  42. C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, and K.M. Sun, Effect of Martensitic Morphology on Mechanical Properties of an As-quenched and Tempered 25CrMo48V Steel, Mat. Sci. Eng. A, 2012, 534, pp 339–346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (No.2016YFB1100201), the Green Manufacturing System Integration Project of the Industry and Information Ministry of China (2017), and the Research and development plan for the future emerging industries in Shenyang (No.18-004-2-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suiyuan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, L., Chen, S., Wei, M. et al. Microstructural Evolution and Properties of 24CrNiMoY Alloy Steel Fabricated by Selective Laser Melting. J. of Materi Eng and Perform 28, 5521–5532 (2019). https://doi.org/10.1007/s11665-019-04280-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04280-z

Keywords

Navigation