Skip to main content

Advertisement

Log in

Effect of Energy Density on the Defects, Microstructure, and Mechanical Properties of Selective-Laser-Melted 24CrNiMo Low-Alloy Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, 24CrNiMo samples with low porosity and high strength were prepared by selecting laser melting technology (SLM). The defect distribution, microstructure evolution, and tensile fracture surface were analyzed by scanning electron microscope and electron backscatter diffraction (EBSD). The experimental results showed that with increase in the energy density, the types of defects would change, and the number of defects showed a trend of first decreasing and then increasing. The microstructure of the samples mainly consisted of martensite with a small amount of lower bainite and residual austenite. EBSD analysis showed that no crystallographic texture was found in the samples. However, the grain orientation would change original direction to form a texture parallel to the load direction during the tensile process. The average grain size increased from 0.346 to 0.381 μm with the increase in energy density. The best sample was prepared under the parameters of 76.56 J/mm3, with the highest microhardness (458.96 HV0.2), ultimate tensile strength (1378.53 MPa), and strength–plasticity product (18.23 GPa%). The relationship among defects distribution, microstructure, and mechanical properties was established, which provided a corresponding theoretical basis for SLM to prepare low-alloy steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Zeng, L. Lu, Y. Gong, N. Zhang and Y. Gong, Optimization of Strength and Toughness of Railway Wheel Steel by Alloy Design, Mater. Des., 2016, 92, p 998–1006.

    Article  CAS  Google Scholar 

  2. X. Cui, S. Zhang, C. Wang, C.H. Zhang, J. Chen and J.B. Zhang, Effects of Stress-Relief Heat Treatment on the Microstructure and Fatigue Property of a Laser Additive Manufactured 12CrNi2 Low Alloy Steel, Mater. Sci. Eng. A, 2020, 791, p 139738.

    Article  CAS  Google Scholar 

  3. C. Wang, S. Zhang, C.H. Zhang, C.L. Wu, J.B. Zhang and A.O. Abdullah, Phase Evolution Mechanism and Wear Resistance of In Situ Synthesized V8C7 Particles Reinforced Fe-Based Coating, Opt. Laser Technol., 2018, 105, p 58–65.

    Article  CAS  Google Scholar 

  4. J.H.K. Tan, S.L. Sing and W.Y. Yeong, Microstructure Modelling for Metallic Additive Manufacturing: A Review, Virtual Phys. Prototyp., 2020, 15, p 87–105.

    Article  Google Scholar 

  5. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat and R. Glardon, Sintering of Commercially Pure Titanium Powder with a Nd: YAG Laser Source, Acta Mater., 2003, 51, p 1651–1662.

    Article  CAS  Google Scholar 

  6. Y.R. Han, C.H. Zhang, X. Cui, S. Zhang, J.B. Zhang and Y. Liu, The Formability and Microstructure Evolution of 24CrNiMo Alloy Steel Fabricated by Selective Laser Melting, Vacuum, 2020, 175, p 109297.

    Article  CAS  Google Scholar 

  7. B.Y. Zhang, Z.Z. Zhang, S.H. Zhou, Q.P. Liu and P. Zhang, A Parametric Local Remelting Approach to Improve Mechanical Properties of Selective Laser Melted 24CrNiMo Steel, Mater. Des., 2021, 282, p 128656.

    CAS  Google Scholar 

  8. P.F. Jiang, C.H. Zhang, S. Zhang, J.B. Zhang, J. Chen and H.T. Chen, Additive Manufacturing of Novel Ferritic Stainless Steel by Selective Laser Melting: Role of Laser Scanning Speed on the Formability, Microstructure and Properties, Opt. Laser Technol., 2021, 140, p 107055.

    Article  CAS  Google Scholar 

  9. C. Emmelmann, P. Sander, J. Kranz and E. Wycisk, Laser Additive Manufacturing and Bionics: Redefining Lightweight Design, Phys. Procedia, 2011, 12, p 364–368.

    Article  Google Scholar 

  10. P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe and E.A. Jägle, Steels in Additive Manufacturing: A Review of Their Microstructure and Properties, Mater. Sci. Eng. A, 2020, 772, p 138633.

    Article  CAS  Google Scholar 

  11. C.L. Wu, S. Zhang, C.H. Zhang, H. Zhang and S.Y. Dong, Phase Evolution and Properties in Laser Surface Alloying of FeCoCrAlCuNix High-Entropy Alloy on Copper Substrate, Surf. Coat. Technol., 2017, 315, p 368–376.

    Article  CAS  Google Scholar 

  12. B. AlMangour, D. Grzesiak, T. Borkar and J.M. Yang, Scanning Strategies for Texture and Anisotropy Tailoring During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites, Mater. Des., 2018, 138, p 119–128.

    Article  CAS  Google Scholar 

  13. B. AlMangour, D. Grzesiak and J.M. Yang, Scanning Strategies for Texture and Anisotropy Tailoring During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites, J. Alloys Compd., 2017, 728, p 424–435.

    Article  CAS  Google Scholar 

  14. F. Bartolomeu, M. Buciumeanu, E. Pinto, N. Alves, O. Carvalho, F.S. Silva and G. Miranda, 316L stainless Steel Mechanical and Tribological Behavior-A Comparison Between Selective Laser Melting, Hot Pressing and Conventional Casting, Addit. Manuf., 2017, 16, p 81–89.

    CAS  Google Scholar 

  15. E. Liverani, S. Toschi, L. Ceschini and A. Fortunato, Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel, J. Mater. Process. Technol., 2017, 249, p 255–263.

    Article  CAS  Google Scholar 

  16. C. Yan, L. Hao, A. Hussein, P. Young and D. Raymont, Advanced Lightweight 316L Stainless Steel Cellular Lattice Structures Fabricated Via Selective Laser Melting. Mater. Des., 2014, 55, p 533–541.

    Article  CAS  Google Scholar 

  17. Z.H. Hu, H.H. Zhu, H. Zhang and X.Y. Zeng, Experimental Investigation On Selective Laser Melting of 17–4PH Stainless Steel, Opt. Laser Technol., 2017, 87, p 17–25.

    Article  CAS  Google Scholar 

  18. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster and T. Niendorf, On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting, Eng. Fract. Mech., 2014, 120, p 15–25.

    Article  Google Scholar 

  19. M. Zheng, L. Wei, J. Chen, Q. Zhang, G.H. Zhang, X. Lin and W.D. Huang, On the Role of Energy Input in the Surface Morphology and Microstructure During Selective Laser Melting of Inconel 718 Alloy, J. Mater. Res. Technol., 2021, 11, p 392–403.

    Article  CAS  Google Scholar 

  20. X. Tang, S. Zhang, C.H. Zhang, J. Chen, J.B. Zhang and Y. Liu, Optimization of Laser Energy Density and Scanning Strategy on the Forming Quality of 24CrNiMo Low Alloy Steel Manufactured by SLM, Mater. Charact., 2020, 170, p 110718.

    Article  CAS  Google Scholar 

  21. X. Zhao, S.Y. Dong, S.X. Yan, X.T. Liu, Y.X. Liu, D. Xia, Y.H. Lv, P. He, B.S. Xu and H.S. Han, The Effect of Different Scanning Strategies on Microstructural Evolution to 24CrNiMo Alloy Steel During Direct Laser Deposition, Mater. Sci. Eng. A, 2020, 771, p 138557.

    Article  CAS  Google Scholar 

  22. L. Cao, S.Y. Chen, M.W. Wei, Q. Guo, J. Liang, C.S. Liu and M. Wang, Effect of Laser Energy Density on Defects Behavior of Direct Laser Depositing 24CrNiMo Alloy Steel, Opt. Laser Technol., 2019, 111, p 541–553.

    Article  CAS  Google Scholar 

  23. X. Cui, S. Zhang, C.H. Zhang, J. Chen, J.B. Zhang and S.Y. Dong, Additive Manufacturing of 24CrNiMo Low Alloy Steel By Selective Laser Melting: Influence of Volumetric Energy Density on Densification, Microstructure and Hardness, Mater. Sci. Eng. A, 2021, 809, p 140957.

    Article  CAS  Google Scholar 

  24. Q. Wang, Z.H. Zhang, X. Tong, S.Y. Dong, Z.Q. Cui, X. Wang and L.Q. Ren, Effects of Process Parameters on the Microstructure and Mechanical Properties of 24CrNiMo Steel Fabricated by Selective Laser Melting, Opt. Laser Technol., 2020, 128, p 106262.

    Article  CAS  Google Scholar 

  25. C.L. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks and M.M. Attallah, On The role of Melt Flow into the Surface Structure and Porosity Development During Selective Laser Melting, Acta Mater., 2015, 96, p 72–79.

    Article  CAS  Google Scholar 

  26. C. Tang, J.L. Tan and C.H. Wong, A Numerical Investigation on the Physical Mechanisms of Single Track Defects in Selective Laser Melting, Int. J. Heat Mass Transf., 2018, 126, p 957–968.

    Article  CAS  Google Scholar 

  27. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath and A.M. Rubenchik, Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing, J. Mater. Proc. Technol., 2014, 214, p 2915–2925.

    Article  Google Scholar 

  28. K. Saeidi, X. Gao, Y. Zhong and Z.J. Shen, Hardened Austenite Steel with Columnar Sub-grain Structure Formed by Laser Melting, Mater. Sci. Eng. A, 2015, 625, p 221–229.

    Article  CAS  Google Scholar 

  29. T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang and H.M. Wang, Grain Morphology Evolution Behavior of Titanium Alloy Components During Laser Melting Deposition Additive Manufacturing, J. Alloys Compd., 2015, 632, p 505–513.

    Article  CAS  Google Scholar 

  30. X.M. Zhao, J. Chen, X. Lin and W.D. Huang, Study on Microstructure and Mechanical Properties of Laser Rapid Forming Inconel 718, Mater. Sci. Eng. A, 2008, 478, p 119–124.

    Article  CAS  Google Scholar 

  31. X. Cui, S. Zhang, C. Wang, C.H. Zhang, J. Chen and J.B. Zhang, Microstructure and Fatigue Behavior of a Laser Additive Manufactured 12CrNi2 Low Alloy Steel, Mater. Sci. Eng. A, 2019, 772, p 138685.

    Article  CAS  Google Scholar 

  32. O. Lopez-Botello, U. Martinez-Hernandez, J. Ramírez, C. Pinna and K. Mumtaz, Two-Dimensional Simulation of Grain Structure Growth within Selective Laser Melted AA-2024, Mater. Des., 2017, 113, p 369–376.

    Article  CAS  Google Scholar 

  33. Y. Zhou, S.Y. Chen, X.T. Chen, J. Liang, C.S. Liu and M. Wang, The Effect of Laser Scanning Speed on Microstructural Evolution During Direct Laser Deposition 12CrNi2 Alloy Steel, Opt. Laser Technol., 2020, 125, p 106041.

    Article  CAS  Google Scholar 

  34. G.P. Dinda, A.K. Dasgupta and J. Mazumder, Texture Control During Laser Deposition of Nickel-Based Superalloy, Scr. Mater., 2012, 67, p 503–506.

    Article  CAS  Google Scholar 

  35. H.L. Wei, J.W. Elmer and T. DebRoy, Origin of Grain Orientation During Solidification of an Aluminum Alloy, Acta Mater., 2016, 115, p 123–131.

    Article  CAS  Google Scholar 

  36. A.M. Ravi, J. Sietsma and M.J. Santofimia, Bainite Formation Kinetics in Steels and the Dynamic Nature of the Autocatalytic Nucleation Process, Scr. Mater., 2017, 140, p 82–86.

    Article  CAS  Google Scholar 

  37. A.M. Ravi, J. Sietsma and M.J. Santofimia, Exploring Bainite Formation Kinetics Distinguishing Grain-Boundary and Autocatalytic Nucleation in High and Low-Si Steels, Acta Mater., 2016, 105, p 155–164.

    Article  CAS  Google Scholar 

  38. A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova and R. Balokhonov, Evolution of Grain Structure During Laser Additive Manufacturing. Simulation by a Cellular Automata Method, Mater. Des., 2016, 106, p 321–329.

    Article  Google Scholar 

  39. X. Zhou, K.L. Li, D.D. Zhang, X.H. Liu, J. Ma, W. Liu and Z.J. Shen, Textures Formed in a CoCrMo Alloy by Selective Laser Melting, J. Alloys Compd., 2015, 631, p 153–164.

    Article  CAS  Google Scholar 

  40. V.A. Popovich, E.V. Borisov, A.A. Popovich, V.S. Sufiiarov, D.V. Masaylo and L. Alzina, Functionally Graded Inconel 718 Processed by Additive Manufacturing: Crystallographic Texture, Anisotropy of Microstructure and Mechanical Properties, Mater. Des., 2017, 114, p 441–449.

    Article  CAS  Google Scholar 

  41. Y. Zhou, X. Zeng, Z. Yang and H.B. Wu, Effect of Crystallographic Textures on Thermal Anisotropy of Selective Laser Melted Cu-2.4Ni-0.7Si Alloy, J. Alloys Compd., 2018, 743, p 258–261.

    Article  CAS  Google Scholar 

  42. A. Majeed, Y.F. Zhang, J.X. Lv, T. Peng, Z. Atta and A. Ahmed, Investigation of T4 and T6 Heat Treatment Influences on Relatively Density and Porosity of AlSi10Mg Alloy Components Manufactured by SLM, Comput. Ind. Eng., 2020, 139, p 106194.

    Article  Google Scholar 

  43. B. AlMangour, D. Grzesiak, J. Cheng and Y. Ertas, Thermal Behavior of the Molten Pool, Microstructural Evolution, and Tribological Performance During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites: Experimental and Simulation Methods, J. Mater. Process. Tech., 2018, 257, p 288–301.

    Article  CAS  Google Scholar 

  44. A. Augustin, P. Huilgol, K.R. Udupa and K.U. Bhat, Effect of Current Density During Electrodeposition on Microstructure and Hardness of Textured Cu Coating in the Application of Antimicrobial Al Touch Surface, J. Mech. Behav. Biomed., 2016, 63, p 352–360.

    Article  CAS  Google Scholar 

  45. F.M. Gao, Theoretical Model of Hardness Anisotropy in Brittle Materials, J. Appl. Phys., 2012, 112, p 023506.

    Article  CAS  Google Scholar 

  46. X.L. Kang, S.Y. Dong, H.B. Wang, S.X. Yan, X.T. Liu and B.S. Xu, Inhomogeneous Microstructure and its Evolution of Laser Melting Deposited 24CrNiMo Steel: From Single-Track to Bulk Sample, Mater. Sci. Eng. A, 2020, 772, p 138795.

    Article  CAS  Google Scholar 

  47. Y. Murakami and M. Endo, Effects of Defects, Inclusions and Inhomogeneities on Fatigue Strength, Int. J. Fatigue, 1994, 16, p 163–182.

    Article  CAS  Google Scholar 

  48. X. Wang, C.H. Zhang, X. Cui, S. Zhang, J. Chen and J.B. Zhang, Microstructure and Mechanical Behavior of Additive Manufactured Cr-Ni-V Low Alloy Steel in Different Heat Treatment, Vacuum, 2020, 175, p 109216.

    Article  CAS  Google Scholar 

  49. K. Zhang, M.H. Zhang, Z.H. Guo, N.L. Chen and Y.H. Rong, A New Effect of Retained Austenite on Ductility Enhancement in High-Strength Quenching-Partitioning-Tempering Martensitic Steel, Mater. Sci. Eng. A, 2011, 528, p 8486–8491.

    Article  CAS  Google Scholar 

  50. Y.C. Wan, S.Y. Xu, C.M. Liu, Y.H. Gao, S.N. Jiang and Z.Y. Chen, Enhanced Strength and Corrosion Resistance of Mg-Gd-Y-Zr Alloy with Ultrafine Grains, Mater. Lett., 2018, 213, p 274–277.

    Article  CAS  Google Scholar 

  51. R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani and L.P. Karjalainen, Interplay Between Grain Structure, Deformation Mechanisms and Austenite Stability in Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Ferrous Alloy, Acta Mater., 2015, 84, p 339–348.

    Article  CAS  Google Scholar 

  52. R.D.K. Misra, X.L. Wan, V.S.A. Challa, M.C. Somani and L.E. Murr, Relationship of Grain Size and Deformation Mechanism to the Fracture Behavior in High Strength-High Ductility Nanostructured Austenitic Stainless Steel, Mater. Sci. Eng. A, 2015, 626, p 41–50.

    Article  CAS  Google Scholar 

  53. X.Z. Ran, D. Liu, J. Li, X. Liu, H.M. Wang, X. Cheng, B. He and H.B. Tang, Effects of Post Homogeneity Heat Treatment Processes on Microstructural Evolution Behavior and Tensile Mechanical Properties of Laser Additive Manufactured Ultrahigh-Strength AerMet100 Steel, Mater. Sci. Eng. A, 2018, 723, p 8–21.

    Article  CAS  Google Scholar 

  54. D. Wang, C.H. Hui, Y.Q. Yang and Y.C. Bai, Investigation of Crystal Growth Mechanism During Selective Laser Melting and Mechanical Property Characterization of 316L Stainless Steel Parts, Mater. Des., 2016, 100, p 291–299.

    Article  CAS  Google Scholar 

  55. P. Liu, R. Zhang, Y. Yuan, C.Y. Cui, F.G. Liang, X. Liu, Y.F. Gu, Y.Z. Zhou and X.F. Sun, Effects of Nitrogen Content on Microstructures and Tensile Properties of a New Ni–Fe Based Wrought Superalloy, Mater. Sci. Eng. A, 2021, 801, p 140436.

    Article  CAS  Google Scholar 

  56. J.B. Yan, Y.F. Gu, F. Sun, Y. Michinari, Z.H. Zhong, Y. Yuan and J.T. Lu, Microstructural Study in a Fe-Ni-Base Superalloy During Creep-Rupture at Intermediate Temperature, Mater. Sci. Eng. A, 2015, 639, p 15–20.

    Article  CAS  Google Scholar 

  57. J. Moerman, P.R. Triguero, C. Tasan and P. van Liempt, Evaluation of Geometrically Necessary Dislocations Density (GNDD) Near Phase Boundaries in Dual Phase Steels by Means of EBSD, Mater. Sci. Forum, 2011, 702–703, p 485–488.

    Article  CAS  Google Scholar 

  58. A.A. Gazder, V.Q. Vu, A.A. Saleh, P.E. Markovsky, O.M. Ivasishin, C.H.J. Davies and E.V. Pereloma, Recrystallisation in a Cold Drawn Low Cost Beta Titanium Alloy During Rapid Resistance Heating, J. Alloys Compd., 2014, 585, p 245–259.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this research from National Key Research and Development Program of China (No. 2016YFB1100204), Key Research Project from Science and Shenyang Science and Technology-Funded Project (No. 19-109-1-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. H. Zhang or S. Zhang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Effect of energy density on the defects, microstructure, and mechanical properties of selective laser melted 24CrNiMo low alloy steel.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F.Z., Zhang, C.H., Cui, X. et al. Effect of Energy Density on the Defects, Microstructure, and Mechanical Properties of Selective-Laser-Melted 24CrNiMo Low-Alloy Steel. J. of Materi Eng and Perform 31, 3520–3534 (2022). https://doi.org/10.1007/s11665-021-06500-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06500-x

Keywords

Navigation