Skip to main content
Log in

Structural, Optical, and Electrical Properties of Tin-Doped CuS Nanoparticles for Photocatalytic Enhancement and Heterojunction Diode

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tin-doped copper sulfide nanoparticles were prepared by the co-precipitation method. The formation of the covellite phase was confirmed by x-ray diffraction (XRD) analysis. The optical band gap for pure CuS was found to be 1.72 eV and it decreased to 1.40 eV while increasing the doping percentage. The morphology and the elemental composition of the samples were analyzed by FESEM and EDX, respectively. The absorption of nanoparticles shows the plasmonic and band-edge absorption. Sn 5 at.% doping in CuS was found to be more catalytic than other samples. I–V measurements were carried out using the drop-casting method on n-type silicon, and the results indicate diode characteristics. For the heterojunction diode, the electrical parameters were calculated, and barrier height was determined to be in the range of 0.857–0.896 V. It was observed that the doping of Sn was affecting the barrier height, saturation current, and ideality factor. The mechanism of tuning the electronic and optical properties of Sn-doped CuS demonstrates a promising application as a heterojunction diode, and as a catalytic material, which have been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.M.H. Al-Jawad, A.A. Taha, and M.M. Muhsen, Preparation and characterization of CuS nanoparticles prepared by two-phase colloidal method. J. Phys. Conf. Ser. 1795(1), 012053 (2021).

    Article  CAS  Google Scholar 

  2. A.S. Alkorbi, H. Muhammad Asif Javed, S. Hussain, S. Latif, M.S. Mahr, M.S. Mustafa, R. Alsaiari, and N.A. Alhemiary, Solar light-driven photocatalytic degradation of methyl blue by carbon-doped TiO2 nanoparticles. Opt. Mater. 127, 112259 (2022).

    Article  CAS  Google Scholar 

  3. M. Anitha, K. Saravanakumar, N. Anitha, I. Kulandaisamy, and L. Amalraj, Influence of annealing temperature on physical properties of Sn-doped CdO thin films by nebulized spray pyrolysis technique. Mater. Sci. Eng. B 243, 54 (2019).

    Article  CAS  Google Scholar 

  4. G.M. Arumugam, S.K. Karunakaran, C. Liu, C. Zhang, F. Guo, S. Wu, and Y. Mai, Inorganic hole transport layers in inverted perovskite solar cells: a review. Nano Select. 2(6), 1081 (2021).

    Article  CAS  Google Scholar 

  5. M. Ates., E. Yılmaz, and M.K. Tanaydın, Challenges, novel applications, and future prospects of chalcogenides and chalcogenide-based nanomaterials for photocatalysis. in Chalcogenide-Based Nanomaterials as Photocatalysts, 307–337 (2021)

  6. S.H. Chaki, M.P. Deshpande, and J.P. Tailor, Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films 550, 291 (2014).

    Article  CAS  Google Scholar 

  7. S.H. Chaki, J.P. Tailor, and M.P. Deshpande, Covellite CuS—single crystal growth by chemical vapour transport (CVT) technique and characterization. Mater. Sci. Semicond. Process. 27(1), 577 (2014).

    Article  CAS  Google Scholar 

  8. L. Chen, H. Hu, Y. Chen, J. Gao, and G. Li, Plasmonic Cu2–xS nanoparticles: a brief introduction of optical properties and applications. Mater. Adv. 2(3), 907–926 (2021).

    Article  CAS  Google Scholar 

  9. S. Deb and P.K. Kalita, Green synthesis of copper sulfide (CuS) nanostructures for heterojunction diode applications. J. Mater. Sci. Mater. Electron. 32(19), 24125 (2021).

    Article  CAS  Google Scholar 

  10. S. Dhiman and B. Gupta, Co3O4 nanoparticles synthesized from waste Li-ion batteries as photocatalyst for degradation of methyl blue dye. Environ. Technol. Innov. 23, 101765 (2021).

    Article  CAS  Google Scholar 

  11. S. Fu, L. Ma, M. Gan, J. Shen, T. Li, X. Zhang, W. Zhan, F. Xie, and J. Yang, Sn-doped nickel sulfide (Ni3S2) derived from bimetallic MOF with ultra high capacitance. J. Alloy. Compd. 859, 157798 (2021).

    Article  CAS  Google Scholar 

  12. D. Ghanbari, M. Salavati-Niasari, M. Esmaeili-Zare, P. Jamshidi, and F. Akhtarianfar, Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite. J. Ind. Eng. Chem. 20(5), 3709 (2014).

    Article  CAS  Google Scholar 

  13. S. Goel, F. Chen, and W. Cai, Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10(4), 631 (2014).

    Article  CAS  Google Scholar 

  14. R.K. Gupta, K. Ghosh, R. Patel, S.R. Mishra, and P.K. Kahol, Highly conducting and transparent tin-doped CdO thin films for optoelectronic applications. Mater. Lett. 62(25), 4103 (2008).

    Article  CAS  Google Scholar 

  15. S. Hadke, M. Huang, C. Chen, Y.F. Tay, S. Chen, J. Tang, and L. Wong, Emerging chalcogenide thin films for solar energy harvesting devices. Chem. Rev. 122(11), 10170 (2021).

    Article  Google Scholar 

  16. H.-Y. He, Y. Yan, J.-F. Huang, and J. Lu, Rapid photodegradation of methyl blue on magnetic Zn1−xCoxFe2O4 nanoparticles synthesized by hydrothermal process. Sep. Purif. Technol. 136, 36 (2014).

    Article  CAS  Google Scholar 

  17. Z. Hosseinpour, A. Alemi, A.A. Khandar, X. Zhao, and Y. Xie, A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties. New J. Chem. 39(7), 5470 (2015).

    Article  CAS  Google Scholar 

  18. L. Isac, C. Cazan, L. Andronic, and A. Enesca, CuS-based nanostructures as catalysts for organic pollutants photodegradation. Catalysts 12(10), 1135 (2022).

    Article  CAS  Google Scholar 

  19. R.A. Ismail, A.-M.E. Al-Samarai, and A.M. Muhammed, High-performance nanostructured p-Cu2S/n-Si photodetector prepared by chemical bath deposition technique. J. Mater. Sci. Mater. Electron. 30(12), 11807–11818 (2019).

    Article  CAS  Google Scholar 

  20. S.T. Kassim, H.A. Hadi, and R.A. Ismail, Fabrication and characterization of high photosensitivity CuS/porous silicon heterojunction photodetector. Optik 221, 165339 (2020).

    Article  CAS  Google Scholar 

  21. A.K. Katiyar, A.K. Sinha, S. Manna, R. Aluguri, and S.K. Ray, Optical photoresponse of CuS–n-Si radial heterojunction with Si nanocone arrays fabricated by chemical etching. Phys. Chem. Chem. Phys. 15(48), 20887 (2013).

    Article  CAS  Google Scholar 

  22. A. Kumar, M. Kumar, V. Bhatt, S. Mukherjee, S. Kumar, H. Sharma, M.K. Yadav, S. Tomar, J.-H. Yun, and R.K. Choubey, Highly responsive and low-cost ultraviolet sensor based on ZnS/p-Si heterojunction grown by chemical bath deposition. Sens. Actuators, A 331, 112988 (2021).

    Article  CAS  Google Scholar 

  23. A. Kumar, S. Mukherjee, H. Sharma, U.K. Dwivedi, S. Kumar, R.K. Gangwar, and R.K. Choubey, Role of deposition parameters on the properties of the fabricated heterojunction ZnS/p-Si Schottky diode. Phys. Scr. 97(4), 045819 (2022).

    Article  Google Scholar 

  24. A. Kumar, S. Mukherjee, H. Sharma, D.K. Rana, A. Kumar, R. Kumar, and R.K. Choubey, Fabrication of low-cost and fast-response visible photodetector based on ZnS:Mn/p-Si heterojunction. Mater. Sci. Semicond. Process. 155, 107226 (2023).

    Article  CAS  Google Scholar 

  25. A. Kumar, D. Pednekar, S. Mukherjee, and R.K. Choubey, Effect of deposition time and complexing agents on hierarchical nanoflake-structured CdS thin films. J. Mater. Sci. Mater. Electron. 31(19), 17055 (2020).

    Article  CAS  Google Scholar 

  26. V. Kumar, H. Sharma, V. Chaudhary, M.K. Yadav, V. Nand Singh, and Surbhi, Ag coated CuS core/shell nanoparticles to harness the full Vis-NIR spectrum for photocatalysis. Chem. Phys. Lett. 807, 140117 (2022).

    Article  CAS  Google Scholar 

  27. R. Kumari and V. Kumar, Synthesis and characterization of Tin-(0.00, 0.02, 0.04, 0.06 and 0.08) doped Cadmium oxide films grown by unconventional sol–gel screen-printing procedure. Optik 219, 165266 (2020).

    Article  CAS  Google Scholar 

  28. J. Kundu and D. Pradhan, Influence of precursor concentration, surfactant and temperature on the hydrothermal synthesis of CuS: structural, thermal and optical properties. New J. Chem. 37(5), 1470 (2013).

    Article  CAS  Google Scholar 

  29. J. Lee, T. Uhrmann, T. Dimopoulos, H. Brückl, and J. Fidler, TEM study on diffusion process of NiFe Schottky and MgO/NiFe tunneling diodes for spin injection in silicon. IEEE Trans. Magn. 46(6), 2067 (2010).

    Article  CAS  Google Scholar 

  30. R. Lesyuk, E. Klein, I. Yaremchuk, and C. Klinke, Copper sulfide nanosheets with shape-tunable plasmonic properties in the NIR region. Nanoscale 10(44), 20640 (2018).

    Article  CAS  Google Scholar 

  31. L. Li, J. Huang, W. Yang, K. Tang, B. Ren, H. Xu, and L. Wang, Fabrication and characterization of p-CuS/n-GaN thin film heterojunction diodes. Surf. Coat. Technol. 307, 1024 (2016).

    Article  CAS  Google Scholar 

  32. R. Li, Y. Jia, N. Bu, J. Wu, and Q. Zhen, Photocatalytic degradation of methyl blue using Fe2O3/TiO2 composite ceramics. J. Alloy. Compd. 643, 88 (2015).

    Article  CAS  Google Scholar 

  33. M. Liang, Y. Zhu, and S. Sun, CuS-Cu 9 S 8 nanoparticles as an efficient catalyst: a facile method via anion controlled. Funct. Mater. Lett. 13(05), 2050024 (2020).

    Article  CAS  Google Scholar 

  34. Y. Liu, M. Liu, and M.T. Swihart, Plasmonic copper sulfide-based materials: a brief introduction to their synthesis, doping, alloying, and applications. J. Phys. Chem. C 121(25), 13435 (2017).

    Article  CAS  Google Scholar 

  35. E.L. Meyer, J.Z. Mbese, and M.A. Agoro, The frontiers of nanomaterials (SnS, PbS and CuS) for dye-sensitized solar cell applications: an exciting new infrared material. Molecules 24, 23 (2019).

    Article  Google Scholar 

  36. C. Nethravathi, J.T. Rajamathi, and M. Rajamathi, Microwave-assisted synthesis of porous aggregates of CuS nanoparticles for sunlight photocatalysis. ACS Omega 4(3), 4825 (2019).

    Article  CAS  Google Scholar 

  37. O.A. Oyewo, N.G. Nevondo, D.C. Onwudiwe, and M.S. Onyango, Photocatalytic degradation of methyl blue in water using sawdust-derived cellulose nanocrystals-metal oxide nanocomposite. J. Inorg. Organomet. Polym. Mater. 31(6), 2542 (2021).

    Article  CAS  Google Scholar 

  38. S. Palanisamy, S. Velmurugan, and T.C.K. Yang, One-pot sonochemical synthesis of CuS nanoplates decorated partially reduced graphene oxide for biosensing of dopamine neurotransmitter. Ultrason. Sonochem. 64(1), 105043 (2020).

    Article  CAS  Google Scholar 

  39. B. Pejjai, M. Reddivari, and T.R.R. Kotte, Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: effect of copper precursors on the properties of CuS. Mater. Chem. Phys. 239, 122030 (2020).

    Article  CAS  Google Scholar 

  40. A. Qurashi, Metal Chalcogenide Nanostructures for Renewable Energy Applications (London: Wiley. Scrivener Publisher, 2014).

    Book  Google Scholar 

  41. S. Riyaz, A. Parveen, and A. Azam, Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Perspect. Sci. 8, 632 (2016).

    Article  Google Scholar 

  42. L. Roza, V. Fauzia, M.Y.A. Rahman, I. Isnaeni, and P.A. Putro, ZnO nanorods decorated with carbon nanodots and its metal doping as efficient photocatalyst for degradation of methyl blue solution. Opt. Mater. 109, 110360 (2020).

    Article  CAS  Google Scholar 

  43. B. Şahin, T. Taşköprü, and F. Bayansal, Bandgap variation of nanostructure tin doped CdO films via SILAR processing. Ceram. Int. 40(6), 8709 (2014).

    Article  Google Scholar 

  44. U. Shamraiz, R.A. Hussain, and A. Badshah, Fabrication and applications of copper sulfide (CuS) nanostructures. J. Solid State Chem. 238, 25 (2016).

    Article  CAS  Google Scholar 

  45. X. Shao, X. Zhang, Y. Liu, J. Qiao, X.D. Zhou, N. Xu, J.L. Malcombe, J. Yi, and J. Zhang, Metal chalcogenide-associated catalysts enabling CO2 electroreduction to produce low-carbon fuels for energy storage and emission reduction: catalyst structure, morphology, performance, and mechanism. J. Mater. Chem. A 9(5), 2526 (2021).

    Article  CAS  Google Scholar 

  46. T. Shen, G. Liu, L. Wei, Y. Zhu, and S. Sun, Construction of ZnS nanoparticles@ porous Cu3SnS4 P-N heterojunction for simulated natural sunlight degradation of methyl blue. Mater. Lett. 253, 446 (2019).

    Article  CAS  Google Scholar 

  47. Q.W. Shu, J. Lan, M.X. Gao, J. Wang, and C.Z. Huang, Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm 17(6), 1374 (2015).

    Article  CAS  Google Scholar 

  48. R.D. Suryavanshi, S.V. Mohite, A.A. Bagade, S.K. Shaikh, J.B. Thorat, and K.Y. Rajpure, Nanocrystalline immobilised ZnO photocatalyst for degradation of benzoic acid and methyl blue dye. Mater. Res. Bull. 101, 324 (2018).

    Article  CAS  Google Scholar 

  49. N. Tank, K.D. Parikh, and M.J. Joshi, Synthesis and characterization of copper sulphide (CuS) nano particles. in AIP Conference Proceedings, 1837, vol. 1, p. 40018 (2017).

  50. A. Tataroğlu, and F.Z. Pür, The Richardson constant and barrier inhomogeneity at Au/Si3N4/n-Si (MIS) Schottky diodes. Phys. Scr. 88(1), 015801 (2013).

    Article  Google Scholar 

  51. M. Wang, F. Xie, W. Li, M. Chen, and Y. Zhao, Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light. J. Mater. Chem. A 1(30), 8616 (2013).

    Article  CAS  Google Scholar 

  52. X. Wang, C. Xu, and Z. Zhang, Synthesis of CuS nanorods by one-step reaction. Mater. Lett. 60(3), 345 (2006).

    Article  CAS  Google Scholar 

  53. T.J. Whittles, L.A. Burton, J.M. Skelton, A. Walsh, T.D. Veal, and V.R. Dhanak, Band alignments, valence bands, and core levels in the Tin sulfides SnS, SnS2, and Sn2S3: experiment and theory. Chem. Mater. 28(11), 3718 (2016).

    Article  CAS  Google Scholar 

  54. X. Wu, K. Liu, Q. Huang, Q. Zhang, X. Yang, X. Liu, and R. Wang, Photothermal therapy based on CuS nanoparticles for alleviating arterial restenosis induced by mechanical injury of endovascular treatment. Front. Mater. 7, 386 (2021).

    Article  Google Scholar 

  55. Z. Xiufeng, L. Juan, L. Lianghai, and W. Zuoshan, Preparation of crystalline Sn-doped TiO2 and its application in visible-light photocatalysis. J. Nanomater. 2011, e432947 (2011).

    Article  Google Scholar 

  56. W. Xu, S. Zhu, Y. Liang, Z. Li, Z. Cui, X. Yang, and A. Inoue, Nanoporous CuS with excellent photocatalytic property. Sci. Rep. 5, 18125 (2015).

    Article  CAS  Google Scholar 

  57. Y. Xu, H. Shen, J. Zhang, Q. Zhao, Z. Wang, B. Xu, and W. Zhang, High-performance CuS/n-Si heterojunction photodetectors prepared by e-beam evaporation of Cu films as precursor layers. J. Alloys Compd. 884, 161121 (2021).

    Article  CAS  Google Scholar 

  58. E. Yan and Z. Zhang, pH-sensitive CuS@Cu2S@Au nanoparticles as a drug delivery system for the chemotherapy against colon cancer. Biochem. Biophys. Res. Commun. 525(1), 204 (2020).

    Article  CAS  Google Scholar 

  59. J. Yin and X. Lu, Theoretical study of electronic structure and optical properties of tin doped CuS counter electrode for dye-sensitized solar cells. Sol. Energy 171, 871 (2018).

    Article  CAS  Google Scholar 

  60. Z. Yuan, A photodiode with high rectification ratio and low turn-on voltage based on ZnO nanoparticles and SubPc planar heterojunction. Physica E 56, 160 (2014).

    Article  CAS  Google Scholar 

  61. J. Zhang, H. Shen, Y. Xu, B. Xu, Y. Feng, J. Ge, and Y. Li, Excellent near-infrared response performance in p-CuS/n-Si heterojunction using a low-temperature solution method. Surf. Interfaces 26, 101430 (2021).

    Article  CAS  Google Scholar 

  62. B.J. Zheng, J.S. Lian, L. Zhao, and Q. Jiang, Optical and electrical properties of Sn-doped CdO thin films obtained by pulse laser deposition. Vacuum 85(9), 861 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

AV acknowledges the help received from Athira S and Nandhuja G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arun Vinod or Mahendra Singh Rathore.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H., Surbhi, Vinod, A. et al. Structural, Optical, and Electrical Properties of Tin-Doped CuS Nanoparticles for Photocatalytic Enhancement and Heterojunction Diode. J. Electron. Mater. 53, 41–52 (2024). https://doi.org/10.1007/s11664-023-10781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10781-4

Keywords

Navigation