Skip to main content
Log in

Effect of deposition time and complexing agents on hierarchical nanoflake-structured CdS thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hierarchical nanoflake-structured CdS thin films have been prepared using chemical bath deposition method at two deposition intervals with different complexing agents. As complexing agents, ammonia and ammonia with triethanolamine or ethylene-diamine-tetra-acetic acid were taken. Structural, optical and morphological studies of the as-deposited CdS films have been studied using X-ray diffraction, UV–Vis and Raman spectroscopy, atomic force and field emission scanning electron microscopy. Compositional analysis reveals that near stoichiometric thin films of CdS were deposited at higher deposition time. X-ray diffraction patterns confirmed the cubic phase of the deposited films and the calculated crystallite sizes increased with higher deposition time while both dislocation densities and micro-strains were found to decrease with increase in deposition time. Field emission scanning electron microscopy shows the formation of hierarchical nanoflakes having small voids at lower deposition time, however, the density of the nanoflakes increases with increase in deposition duration. UV–Vis–NIR spectroscopy was performed in the spectral range 350–1100 nm which confirmed that the synthesized films contain good optical transparency in the range of 85–95% and the calculated bandgaps were found in the range of 2.20–2.42 eV. Raman spectroscopy indicated a strong electron–phonon coupling for films deposited for longer duration as the particle size increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, Energy Strategy Rev. 24, 38 (2019)

    Google Scholar 

  2. A. Morales-Acevedo, Sol. Energy 80, 675 (2006)

    CAS  Google Scholar 

  3. F.I. Ezema, D.D. Hile, S.C. Ezugwu, R.U. Osuji, P.U. Asogwa, J. Ovonic Res. 6, 99 (2010)

    CAS  Google Scholar 

  4. Y.D. Chung, D.H. Cho, N.M. Park, K.S. Lee, J. Kim, Curr. Appl. Phys. 11, S65–67 (2011)

    Google Scholar 

  5. A. Laemmle, R. Wuerz, M. Powalla, Phys. Status Solidi RRL 7, 631 (2013)

    CAS  Google Scholar 

  6. A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Nat. Mater. 12, 1107 (2013)

    CAS  Google Scholar 

  7. P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Phys. Status Solidi RRL 8, 219 (2014)

    CAS  Google Scholar 

  8. D. Herrmann, P. Kratzert, S. Weeke, M. Zimmer, J. Djordjevic-Reiss, R. Hunger, P. Lindberg, E. Wallin, O. Lundberg and L. Stolt, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (Denver, CO, 2014), pp. 2775.

  9. K.F. Tai, R. Kamada, T. Yagioka, T. Kato, H. Sugimoto, Jpn. J. Appl. Phys. Part 1 56, 08MC03 (2017)

    Google Scholar 

  10. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Phys. Status Solidi RRL 9, 28 (2015)

    CAS  Google Scholar 

  11. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi RRL 10, 583 (2016)

    CAS  Google Scholar 

  12. See https://www.solar-frontier.com/eng/news/2019/0117_press.html for “Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 23.35%”. Accessed 17 Jan 2019.

  13. S.V. Bogdanov, V.G. Lyssenko, Phys. Status Solidi B 150, 593 (1988)

    CAS  Google Scholar 

  14. Y.-J. Chang, C.L. Munsee, G.S. Herman, J.F. Wager, P. Mugdur, D.-H. Lee, C.-H. Chang, Surf. Interface Anal. 37, 398 (2005)

    CAS  Google Scholar 

  15. A. Nazir, A. Toma, N.A. Shah, S. Panaro, S. Butt, R.U. Rehman Sagar, W. Raja, K. Rasool, A. Maqsood, J. Alloy Compd. 609, 40 (2014)

    CAS  Google Scholar 

  16. B.P. Singh, R. Kumar, V. Singh, R.C. Tyagi, Phys. Proc. 32, 766 (2012)

    CAS  Google Scholar 

  17. H. Moualkia, G. Rekhila, A. Mahdjoub, M. Trari, J. Mater. Sci. Mater. Electron. 28, 19105 (2017)

    CAS  Google Scholar 

  18. F. Lin, E.Z. Liang, S.M. Shih, W.F. Su, Proc. SPIE 102, 4641 (2002)

    Google Scholar 

  19. R.K. Choubey, D. Desai, S.N. Kale, S. Kumar, J. Mater. Sci. Mater. Electron. 27, 7890 (2016)

    CAS  Google Scholar 

  20. S. Moon, J. Lee, H. Jung, Thin Solid Films 511–512, 299 (2006)

    Google Scholar 

  21. A. Hartley, S.J.C. Irvine, D.P. Halliday, M.D.G. Potter, Thin Solid Films 387, 89 (2001)

    CAS  Google Scholar 

  22. M. Hadrich, N. Lorenza, H. Metznera, U. Reislohnera, S. Macka, M. Gosslaa, W. Witthuhn, Thin Solid Films 515, 5804 (2007)

    Google Scholar 

  23. N. Romeoa, A. Bosio, V. Canevarib, M. Terheggenc, L.V. Roca, Thin Solid Films 431–432, 364 (2003)

    Google Scholar 

  24. A. Romeoa, D.L. Batznera, H. Zogga, C. Vignalib, A.N. Tiwari, Sol. Energy Mater. Sol. Cells 67, 311 (2001)

    Google Scholar 

  25. Y.S. Lo, R.K. Choubey, W.C. Yu, W.T. Hsu, C.W. Lan, Thin Solid Films 520, 217 (2011)

    CAS  Google Scholar 

  26. S. Kumar, H.C. Jeon, T.W. Kang, R. Seth, S. Panwar, S.K. Shinde, D.P. Waghmode, R.G. Saratale, R.K. Choubey, J. Mater. Sci. Mater. Electron. 30, 17747 (2019)

    CAS  Google Scholar 

  27. R.K. Choubey, S. Kumar, C.W. Lan, Adv. Nat. Sci. Nanosci. Nanotech. 5, 025015 (2014)

    Google Scholar 

  28. S. Sahare, R.K. Choubey, G. Jadhav, T.M. Bhave, S. Mukherjee, S. Kumar, J. Supercond. Novel Magn. 30, 1439 (2017)

    CAS  Google Scholar 

  29. K. Ravichandran, P. Philominathan, Sol. Energy 82, 1062 (2008)

    CAS  Google Scholar 

  30. K.P. Acharya, K. Mahalingam, B. Ullrich, Thin Solid Films 518, 1784 (2010)

    CAS  Google Scholar 

  31. G. Sasikala, P. Thilakan, C. Subramannian, Solar Energy Mater. Solar Cells 62, 275 (2000)

    CAS  Google Scholar 

  32. R. Castro-Rodriguez, A.I. Oliva, V. Sosa, F.C. Aballero-Briones, J.L. Pena, Appl. Surf. Sci. 161, 340 (2000)

    CAS  Google Scholar 

  33. J. Herrero, M.T. Gutierrez, C. Guillen, J.M. Dona, M.A. Martinez, A.M. Chaparro, R. Bayon, Thin Solid Films 361–362, 28 (2000)

    Google Scholar 

  34. J.G. Vazquez-Luna, R.B. Lopez Flores, M. Rubin-Falfan, L. Del, C. Gomez-Pavon, J. Cryst. Growth 187, 380 (1998)

    CAS  Google Scholar 

  35. H. Zhang, X. Ma, D. Yang, Mater. Lett. 58, 5 (2003)

    Google Scholar 

  36. G. Hodes, Chemical Solution Deposition of Semiconductor Film (Dekker, New York, 2002)

    Google Scholar 

  37. A. Cortes, H. Gomez, R.E. Marotti, G. Riveros, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 21 (2004)

    CAS  Google Scholar 

  38. C. Guillen, M.A. Martinez, C. Maffiotte, J. Herrero, J. Electrochem. Soc. 148, G602 (2001)

    CAS  Google Scholar 

  39. F.R. Ahmad, A. Yakimov, R.J. Davis, J.H. Her, J.R. Cournoyer, N.M. Ayensu, Thin Solid Films 535, 166 (2013)

    CAS  Google Scholar 

  40. J.K. Dongre, M. Ramrakhiani, J. Alloy Compd. 487, 653 (2009)

    CAS  Google Scholar 

  41. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, 1978)

    Google Scholar 

  42. H. Haddad, A. Chelouche, D. Talantikite, H. Merzouk, F. Boudjouan, D. Djouadi, Thin Solid Films 589, 451 (2015)

    CAS  Google Scholar 

  43. K.V. Khot, S.S. Mali, N.B. Pawar, R.R. Kharade, R.M. Mane, V.V. Kondalkar, P.B. Patil, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, New J. Chem. 38, 5964 (2014)

    CAS  Google Scholar 

  44. T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabatade, T. Torimoto, J. Mater. Chem. 20, 5319 (2010)

    CAS  Google Scholar 

  45. K.V. Khot, S.S. Mali, N.B. Pawar, R.M. Mane, V.V. Kondalkar, V.B. Ghanwat, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci.: Mater. Electron. 25, 3762 (2014)

    CAS  Google Scholar 

  46. U. Pal, D. Samantha, S. Ghorai, A.K. Chaudhuri, J. Appl. Phys. 74, 6368 (1993)

    CAS  Google Scholar 

  47. V. Bilgin, S. Kose, F. Atay, I. Akyur, Mater. Chem. Phys. 94, 103 (2005)

    CAS  Google Scholar 

  48. V.M. Garcia, M.T.S. Nair, P.K. Nair, R.A. Zingaro, Semicond. Sci. Technol. 12, 645 (1997)

    CAS  Google Scholar 

  49. A. Kamble, B. Sinha, G. Agawane, S. Vanalakar, I.Y. Kim, J.Y. Kim, S.S. Kale, P. Patil, J.H. Kim, Phys. Chem. Chem. Phys. 18, 28024 (2016)

    CAS  Google Scholar 

  50. J. Tauc, A. Menth, J. Non-Crystall. Sol. 8–10, 569 (1972)

    Google Scholar 

  51. S. Gupta, R.K. Choubey, L.K. Sharma, M.P. Ghosh, M. Kar, S. Mukherjee, Semicond. Sci. Technol. 34, 105006 (2019)

    CAS  Google Scholar 

  52. L. Wenyi, C. Xun, C. Qiulong, Z. Zhibin, Mater. Lett. 59, 1 (2005)

    Google Scholar 

  53. M.F. Saleem, H. Zhang, Y. Deng, D. Wang, J. Raman Spectrosc. 48, 224 (2017)

    CAS  Google Scholar 

  54. O. Oladeji, L. Chow, J.R. Liu, W.K. Chu, A.N.P. Bustamante, C. Fredricksen, A.F. Schulte, Thin Solid Films 359, 154 (2000)

    CAS  Google Scholar 

  55. X.-P. Shen, A.-H. Yuan, F. Wang, J.-M. Hong, Z. Xu, Solid State Commun. 133, 19 (2005)

    CAS  Google Scholar 

  56. O. de Melo, L. Hernandez, O. Zelaya-Angel, R. Lozada-Morales, M. Becerril, E. Vasco, Appl. Phys. Lett. 65, 1278 (1994)

    Google Scholar 

  57. S. Sahoo, A.K. Arora, J. Phy. Chem. B 114, 4199 (2010)

    CAS  Google Scholar 

  58. P. Kumar, N. Saxena, R. Chandra, V. Gupta, A. Agarwal, D. Kanjilal, Nanoscale Res. Lett. 7, 584 (2012)

    Google Scholar 

Download references

Acknowledgements

One of the authors, Ravi Kant Choubey is thankful to the Council of Science & Technology, Lucknow, Uttar Pradesh, India for the financial support (Vide No. CST/4051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kant Choubey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Pednekar, D., Mukherjee, S. et al. Effect of deposition time and complexing agents on hierarchical nanoflake-structured CdS thin films. J Mater Sci: Mater Electron 31, 17055–17066 (2020). https://doi.org/10.1007/s10854-020-04263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04263-0

Navigation