Skip to main content
Log in

Green synthesis of copper sulfide (CuS) nanostructures for heterojunction diode applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper sulfide (CuS) rod shaped nanostructures with an average length 8 to 10 nm are synthesized through green chemical route using biodegradable starch as a capping agent under a nitrogen environment. Owing to the presence of a large number of glucose units linked by glycosidic bonds, starch can cap copper sulfide (CuS) nanoparticles. The preparation of CuS under nitrogen atmosphere produces fine quality CuS nanostructures by minimizing oxidation. XRD pattern reveals pure hexagonal covellite type CuS nanostructure with prime diffraction planes along (101), (102), (103), (006), (008), and (110) directions. The lattice parameters estimated as a = 3.790 Å and c = 16.51 Å. HRTEM studies show a well distribution of CuS nanorods. It shows prominent d-value of 0.28 nm corresponding to (103) hexagonal plane of CuS. The optical absorption extended up to 364 nm which is fairly blue shifted over bulk owing to the quantum confinement brought by starch. The photoluminescence emission is observed at 525 nm. The IV measurements in planar geometry exhibit the linearity that reveals the ohmic behavior of carrier transport in CuS nanostructures. CuS nanostructures have been successfully used as effective p-type layer to fabricate sandwiched heterojunction devices with zinc chalcogenides (ZnO/ZnS and ZnS/ZnO) core/shell nanocomposites. The p-CuS/n-(zinc chalcogenides) heterojunction devices show good diode characteristics with an increase of ideality factor that may be attributed to surface defects and inhomogeneity in the barrier height. The photodetector also exhibits promising characteristics in terms of responsivity and quantum efficiency which are significant corresponding to material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. L.Z. Pei, J.F. Wang, X.X. Tao, S.B. Wang, Y.P. Dong, C.G. Fan, Q.F. Zhang, Mater. Charact. 62, 354 (2011). https://doi.org/10.1016/j.matchar.2011.01.001

    Article  CAS  Google Scholar 

  2. R. Khunphonoi, K. Wantala, N. Grisdanurak, Environ. Eng. Res. 26, 190484 (2021). https://doi.org/10.4491/eer.2019.484

    Article  Google Scholar 

  3. Adel H. Omran Al-khayatt, Mustafa D. Jaafer, J. Kufa Phys. 5, 79–90 (2013)

    Google Scholar 

  4. L.A. Isac, A. Duta, A. Kriza, I.A. Enesca, M. Nanu, J. Phys. Conf. Ser. 61, 477–481 (2007)

    Article  CAS  Google Scholar 

  5. J. Kundu, D. Pradhan, New J. Chem. 37, 1470 (2013). https://doi.org/10.1039/c3nj41142g

    Article  CAS  Google Scholar 

  6. A.U. Ubale, D.M. Choudhari, J.S. Kantale, V.N. Mitkari, M.S. Nikam, W.J. Gawande, P.P. Patil, J. Alloys Compd. 509, 9249 (2011). https://doi.org/10.1016/j.jallcom.2011.07.009

    Article  CAS  Google Scholar 

  7. X.H. Liao, N.Y. Chen, S. Xu, S. Bin Yang, J.J. Zhu, J. Cryst. Growth 252, 593 (2003). https://doi.org/10.1016/S0022-0248(03)01030-3

    Article  CAS  Google Scholar 

  8. R.S. Christy, J. Thampi, T. Kumaran, J. Non-Oxide Glas. 6, 13 (2014)

    Google Scholar 

  9. M. Saranya, C. Santhosh, R. Ramachandran, P. Kollu, P. Saravanan, M. Vinoba, S.K. Jeong, A.N. Grace, Powder Technol. 252, 25 (2014)

    Article  CAS  Google Scholar 

  10. I.Puspitasari, T.P.Gujar, K.D.Jung, Mat.Sci.Eng.140, 199 (2007)

    Article  Google Scholar 

  11. M.T.S. Nair, L. Guerrero, P.K. Nair, Semicond. Sci. Technol. 13, 1164 (1998)

    Article  CAS  Google Scholar 

  12. J.S. Cruz, S.A.M. Hernandez, F.P. Delgado, O.Z. Angel, R.C. Perez, G.T. Delgado, Int. J. Photoenergy 2013, 178017 (2013). https://doi.org/10.1155/2013/178017

  13. X. Qian, J. Fang, Y. Song, Proc. of SPIE 7381, 26 (2013)

  14. J.-H. Lim, C.-K. Kang, K.-K. Kim, I.-K. Park, D.-K. Hwang, S.-J. Park, Adv. Mater. 18, 2720 (2006)

    Article  CAS  Google Scholar 

  15. S.M. Hatch, J. Briscoe, S. Dunn, Adv. Mater. 25, 867 (2013)

    Article  CAS  Google Scholar 

  16. L. Zheng, F. Teng, Z. Zhang, B. Zhao, X. Fang, J. Mater. Chem. C 4, 10032 (2016)

    Article  CAS  Google Scholar 

  17. L.Q. Qin, C. Shing, S. Sawyer, P.S. Dutta, Opt. Mater. 33, 359 (2011)

    Article  CAS  Google Scholar 

  18. H. Lin, L. Wei, C. Wu, Y. Chen, S. Yan, L.Mei and J. Jiao, Nanoscale Res. Lett. 11, 420 (2016)

    Article  Google Scholar 

  19. X. Huang, M. Wang, M.G. Willinger, L.D. Shao, D.S. Su, X.M. Meng, ACS Nano. 6, 7333 (2012). https://doi.org/10.1021/nn3024514

    Article  CAS  Google Scholar 

  20. L.F. Hu, J. Yan, M.Y. Liao, H.J. Xiang, X.G. Gong, L.D. Zhang, X.S. Fang, Adv Mater 24, 2305 (2012)

    Article  CAS  Google Scholar 

  21. M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. .Tajabadi, N.Kamarulzaman, J. Lumin. 145, 244 (2014)

    Article  CAS  Google Scholar 

  22. J. Li, D. Zhao, X. Meng, Z. Zhang, J. Zhang, D. Shen, Y. Lu, X. Fan, J. Phys. Chem. B 110, 14685 (2006)

    Article  CAS  Google Scholar 

  23. R. Xie, X. Zhong and T. Basche, Adv. Mater. 17, 2741 (2005)

    Article  CAS  Google Scholar 

  24. L. Hu, J.Yan, M.Liao, H.Xiang, X.Gong, L.Zhang, X. Fang, Adv. Mater. 24, 2305 (2012). https://doi.org/10.1002/adma.201200512

    Article  CAS  Google Scholar 

  25. A. Sadollahkhani, I. Kazeminezhad, J. Lu, O.Nur, L. Hultman and M. Willander, RSC Adv. 4, 36940 (2014). https://doi.org/10.1039/C4RA05247A

    Article  CAS  Google Scholar 

  26. S.Thakur, N.Sharma, A.Varkia and J. Kumar, Pelagia Res. Libr. 5, 18 (2014)

    CAS  Google Scholar 

  27. M.Babikier, D.Wang, J.Wang,Q. Li, J. Sun, Y. Yan, Q. Yu and S. Jiao, Nanoscale Res. Lett. 9, 199 (2014)

    Article  CAS  Google Scholar 

  28. S. Yadav, P.K. Bajpai, Nano-Struct. Nano-Objects 10, 151 (2017). https://doi.org/10.1016/j.nanoso.2017.03.009

    Article  CAS  Google Scholar 

  29. J. Podder, R. Kobayashi, M. Ichimura, Thin Solid Films 472, 71 (2005). https://doi.org/10.1016/j.tsf.2004.06.137

    Article  CAS  Google Scholar 

  30. N. Mukherjee, A. Sinha, G.G. Khan, D. Chandra, A. Bhaumik, A. Mondal, Mater. Res. Bull. 46, 6 (2011). https://doi.org/10.1016/j.materresbull.2010.10.004

    Article  CAS  Google Scholar 

  31. S. Deb, P.K. Kalita, P. Datta, Int. J. Nanosci. 16, 1760032 (2017). https://doi.org/10.1142/S0219581X17600328

    Article  CAS  Google Scholar 

  32. K. Vishwakarma, Ph.D. Thesis, National Institute of Technology, 2013

  33. S. Deb, Ph.D. Thesis, Gauhati University, 2017

  34. P. Raveendran, J. Fu, S.L. Wallen, J. Am. Chem. Soc. 125, 13940 (2003)

    Article  CAS  Google Scholar 

  35. S.I. Raj, A. Jaiswal, I. Uddinb, RSC Adv. 10, 14050 (2020)

    Article  CAS  Google Scholar 

  36. C.M. Simonescu, L. Patron, V.S. Teodorescu, M. Brezeanu, C. Capatina, J. Optoelectron. Adv. Mater. 8, 597 (2006)

    CAS  Google Scholar 

  37. M.M. Kamazani, Z. Zarghami, M.S. Niasari, J. Phys. Chem. C 120, 2096 (2016). https://doi.org/10.1021/acs.jpcc.5b11566

  38. S. Deb, P.K. Kalita, P. Datta, Phys. Scr. 95, 095810 (2020). https://doi.org/10.1088/1402-4896/abac75

    Article  CAS  Google Scholar 

  39. Y. Huang, H. Xiao, S. Chen, C. Wang, Ceram. Int. 35, 905 (2009). https://doi.org/10.1016/j.ceramint.2008.02.003

  40. E. Godocíkova, P. Balaz, J.M. Criado, C. Real, E. Gock, Thermochim. Acta 440, 19 (2006). https://doi.org/10.1016/j.tca.2005.09.015

    Article  CAS  Google Scholar 

  41. B.D. Cullity, Elements of X-Ray Diffraction (Addison Wesley, New York, 1978)

    Google Scholar 

  42. X. Xu, J. Bullock, L.T. Schelhas, E.Z. Stutz, J.J. Fonseca, M. Hettick, V.L. Pool, K.F. Tai, M.F. Toney, X. Fang, A. Javey, L.H. Wong, J.W. Ager, Nano Lett. 16, 1925 (2016). https://doi.org/10.1021/acs.nanolett.5b05124

    Article  CAS  Google Scholar 

  43. P.A. Ajibade, N.L. Botha, Synthesis, Nanomaterials 7, 32 (2017). https://doi.org/10.3390/nano7020032

    Article  CAS  Google Scholar 

  44. A.D. Dhondge, S.R. Gosavi, N.M. Gosavi, C.P. Sawant, A.M. Patil, A.R. Shelke, N.G. Deshpande, World J. Condens. Matter Phys. 5, 1 (2015)

    Article  CAS  Google Scholar 

  45. M. Sze, M.K. Lee, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2006)

    Book  Google Scholar 

  46. M.J. Jing, J.K. Xin, L.B. Cheng, F. Fei, X. Hui, Z.C. Chao, C.C. Le, Chin. Phys. Lett. 27, 107304 (2010). https://doi.org/10.1088/0256-307X/27/10/107304

  47. A. N. Corpus-Mendoza, M. M. De Souza and F. Hamelmann J. Appl. Phys. 114, 184505 (2013). https://doi.org/10.1063/1.4831661

    Article  CAS  Google Scholar 

  48. S.M. Faraz, W. Shah, N.U.H. Alvi, O. Nur, Q.U. Wahab, Adv. Condens. Matter Phys. 2020, 6410573 (2020). https://doi.org/10.1155/2020/6410573

    Article  CAS  Google Scholar 

  49. N.N. Jandow, F.K. Yam, S.M. Thahab, H.A. Hassan and K. Ibrahim, Curr. Appl. Phys. 10, 1452 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical support of the Department of Physics, IIT-Guwahati for XRD analysis and IV characteristics, Sophisticated Analytic Instrument Facility (NEHU) Shillong for HRTEM analysis and Department of Chemistry, Gauhati University for optical analysis.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

We confirm that all authors contributed significantly to the creation of this manuscript.

Corresponding author

Correspondence to Sujata Deb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, S., Kalita, P.K. Green synthesis of copper sulfide (CuS) nanostructures for heterojunction diode applications. J Mater Sci: Mater Electron 32, 24125–24137 (2021). https://doi.org/10.1007/s10854-021-06879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06879-2

Navigation