Skip to main content
Log in

Photocatalytic degradation of methyl blue in water using sawdust-derived cellulose nanocrystals-metal oxide nanocomposite

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The increase in dye-containing effluents that are discharged into the environment and the need to remediate the water bodies from the adverse effect of these dye pollutants have motivated a lot of research work. In this study, ZnO and TiO2 heterojunction systems (MO) embedded in cellulose nanocrystals (CNC), derived from sawdust, are reported. The nanocomposites (CNC/MO) were subsequently used as photocatalyst for the degradation of methyl blue (MB). The nanocomposites were characterized using SEM/EDs, XRD, and the degradation of MB were determined by UV-vis spectrophotometer. The XRD analysis showed characteristic peaks of CNC and the metal oxide (MO) upon the nanocomposite formation. A reduction in the intensity of peak at 30°, attributed to the cellulose 1β phase of pristine CNC, was observed. The morphological evaluation revealed that the nanocomposite exhibited intertwined spherical and rod-like shape on the surface. The effects of some key operating parameters, such as initial pH, catalyst dosage, and initial dye concentration on the degradation of MB were investigated. Higher degradation percentage (98.52%) of MB was observed for the CNC/MO at optimum pH 6. The adopted kinetics models showed that MB degradation was well described by the pseudo-second order model. The application of this nanocomposites in real industrial sample will confirm its robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Christwardana, D. Frattini, G. Accardo, S.P. Yoon, Y. Kwon, Effects of methylene blue and methyl red mediators on performance of yeast based microbial fuel cells adopting polyethylenimine coated carbon felt as anode. J. Power Sources 396, 1–11 (2018)

    Article  CAS  Google Scholar 

  2. J. Lasri, A.S. Elsherbiny, N.E. Eltayeb, M. Haukka, M.E. El-Hefnawy, Synthesis and characterization of ferrocene-based Schiff base and ferrocenecarboxaldehyde oxime and their adsorptive removal of methyl blue from aqueous solution. J. Organomet. Chem. 866, 21–26 (2018)

    Article  CAS  Google Scholar 

  3. K. Lin, M. Qin, X. Geng, L. Wang, H. Wu, ZnCo2O4 nanorods as a novel class of high-performance adsorbent for removal of methyl blue. Adv. Powder Technol. 29(8), 1933–1939 (2018)

    Article  CAS  Google Scholar 

  4. T. Shen, G. Liu, L. Wei, Y. Zhu, S. Sun, Construction of ZnS nanoparticles@ porous Cu3SnS4 P-N heterojunction for simulated natural sunlight degradation of methyl blue. Mater. Lett. 253, 446–449 (2019)

    Article  CAS  Google Scholar 

  5. H. Wang, S. Jia, H. Wang, B. Li, W. Liu, N. Li, et al., A novel-green adsorbent based on betaine-modified magnetic nanoparticles for removal of methyl blue. Sci. Bull. 62(5), 319–325 (2017)

    Article  CAS  Google Scholar 

  6. S. Evans, C. Campbell, O.V. Naidenko, Cumulative risk analysis of carcinogenic contaminants in United States drinking water. Heliyon 5(9), e02314 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  7. L. Shamaei, B. Khorshidi, B. Perdicakis, M. Sadrzadeh, Treatment of oil sands produced water using combined electrocoagulation and chemical coagulation techniques. Sci. Total Environ. 645, 560–572 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. M.A. Al-Ghouti, M.A. Al-Kaabi, M.Y. Ashfaq, D.A. Da’na, Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 28, 222–239 (2019)

    Article  Google Scholar 

  9. H. Abu Hasan, M.H. Muhammad, N.I. Ismail, A review of biological drinking water treatment technologies for contaminants removal from polluted water resources. J. Water Process Eng. 33, 101035 (2020)

    Article  Google Scholar 

  10. G. Zhao, L. Liu, C. Li, T. Zhang, T. Yan, J. Yu, et al., Construction of diatomite/ZnFe layered double hydroxides hybrid composites for enhanced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. A Chem. 367, 302–311 (2018)

    Article  CAS  Google Scholar 

  11. G. Fadillah, T.A. Saleh, S. Wahyuningsih, E. Ninda Karlina Putri, S. Febrianastuti, Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chem. Eng. J. 378, 122140 (2019)

    Article  CAS  Google Scholar 

  12. T. Luo, H. Liang, D. Chen, Y. Ma, W. Yang, Highly enhanced adsorption of methyl blue on weakly cross-linked ammonium-functionalized hollow polymer particles. Appl. Surf. Sci. 505, 144607 (2020)

    Article  CAS  Google Scholar 

  13. J.J. Rueda-Marquez, I. Levchuk, P. Fernández Ibañez, M. Sillanpää, A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 258, 120694 (2020)

    Article  CAS  Google Scholar 

  14. C. Maria Magdalane, K. Kaviyarasu, A. Raja, M.V. Arularasu, G.T. Mola, A.B. Isaev, et al., Photocatalytic decomposition effect of erbium doped cerium oxide nanostructures driven by visible light irradiation: Investigation of cytotoxicity, antibacterial growth inhibition using catalyst. J. Photochem. Photobiol. B Biol. 185, 275–282 (2018)

    Article  CAS  Google Scholar 

  15. C.M. Magdalane, K. Kaviyarasu, G.M.A. Priyadharsini, A.K.H. Bashir, N. Mayedwa, N. Matinise, et al., Improved photocatalytic decomposition of aqueous Rhodamine-B by solar light illuminated hierarchical yttria nanosphere decorated ceria nanorods. J. Mater. Res. Technol. 8(3), 2898–2909 (2019)

    Article  CAS  Google Scholar 

  16. C. Maria Magdalane, K. Kaviyarasu, N. Matinise, N. Mayedwa, N. Mongwaketsi, D. Letsholathebe, et al., Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/ visible light induced removal of organic dye from urban wastewater. South Afr. J. Chem. Eng. 26, 49–60 (2018)

    Article  Google Scholar 

  17. X. Cheng, Y. Shang, Y. Cui, R. Shi, Y. Zhu, P. Yang, Enhanced photoelectrochemical and photocatalytic properties of anatase-TiO2(B) nanobelts decorated with CdS nanoparticles. Solid State Sci. 99, 106075 (2020)

    Article  CAS  Google Scholar 

  18. A. Garzon-Roman, C. Zuñiga-Islas, E. Quiroga-González, Immobilization of doped TiO2 nanostructures with Cu or in inside of macroporous silicon using the solvothermal method: Morphological, structural, optical and functional properties. Ceram. Int. 46(1), 1137–1147 (2020)

    Article  CAS  Google Scholar 

  19. P. Kumar, A. Kumar, M.A. Rizvi, S.K. Moosvi, V. Krishnan, M.M. Duvenhage, et al., Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Appl. Surf. Sci. 514, 145930 (2020)

    Article  CAS  Google Scholar 

  20. H. Mansour, K. Omri, R. Bargougui, S. Ammar, Novel α-Fe2O3/TiO2 nanocomposites with enhanced photocatalytic activity. Appl. Phys. A. 126(3), 151 (2020)

    Article  CAS  Google Scholar 

  21. S.V. Kotelnikova, V.V. Suslonov, M.A. Voznesenskiy, N.P. Bobrysheva, M.G. Osmolowsky, F. Rajabi, et al., Effect of capping agents on Co polyol particles morphology, magnetic and catalytic properties. Mater. Chem. Phys. 223, 745–750 (2019)

    Article  CAS  Google Scholar 

  22. P. Basnet, S. Chatterjee, Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Struct. Nano-Objects. 22, 100426 (2020)

    Article  CAS  Google Scholar 

  23. Q. Jiang, X. Xing, Y. Jing, Y. Han, Preparation of cellulose nanocrystals based on waste paper via different systems. Int. J. Biol. Macromol. 149, 1318–1322 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. M.H.A. Suleiman, Prenylated flavonoids from the stem wood of Commiphora opobalsamum (L.) Engl. (Burseraceae). J. King Saud Univ. Sci. 27(1), 71–75 (2015)

    Article  Google Scholar 

  25. D. Tekin, H. Kiziltas, H. Ungan, Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. J. Mol. Liq. 306, 112905 (2020)

    Article  CAS  Google Scholar 

  26. A.-hM. El-Aassar, H. Isawi, M. El-Noss, R.A. El-Kholy, M.M. Said, H.A. Shawky, Design and fabrication of continuous flow photoreactor using semiconductor oxides for degradation of organic pollutants. J. Water Process Eng. 32, 100922 (2019)

    Article  Google Scholar 

  27. O.A. Oyewo, B. Mutesse, T.Y. Leswifi, M.S. Onyango, Highly efficient removal of nickel and cadmium from water using sawdust-derived cellulose nanocrystals. J. Environ. Chem. Eng. 7(4), 103251 (2019)

    Article  CAS  Google Scholar 

  28. Z. Heidari, R. Alizadeh, A. Ebadi, N. Oturan, M.A. Oturan, Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods. Sep. Purif. Technol. 242, 116800 (2020)

    Article  CAS  Google Scholar 

  29. T. Zhou, J. Wang, S. Chen, J. Bai, J. Li, Y. Zhang, et al., Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Appl. Catal. B Environ. 267, 118599 (2020)

    Article  CAS  Google Scholar 

  30. K.A. Isai, V.S. Shrivastava, Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: A comparative study. SN Appl. Sci. 1(10), 1247 (2019)

    Article  CAS  Google Scholar 

  31. N. Alonizan, L. Chouiref, K. Omri, M.A. Gondal, N. Madkhali, T. Ghrib, et al., Photocatalytic activity, microstructures and luminescent study of Ti-ZS:M Nano-composites materials. J. Inorg. Organomet. Polym. Mater. 30(11), 4372–4381 (2020)

    Article  CAS  Google Scholar 

  32. D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44, 3358–3393 (2005)

    Article  CAS  Google Scholar 

  33. A. Yakubu, T.M. Umar, S.S.D. Mohammed, Chemical modification of microcrystalline cellulose: Improvement of barrier surface properties to enhance surface interactions with some synthetic polymers for biodegradable packaging material processing and applications in textile, food and pharmaceutical industry. Adv. Appl. Sci. Res. 2(6), 532–540 (2011)

    CAS  Google Scholar 

  34. J. Zhang, T.J. Elder, Y. Pu, A.J. Ragauskas, Facile synthesis of spherical cellulose nanoparticles. Carbohydr. Polym. 69(3), 607–611 (2007)

    Article  CAS  Google Scholar 

  35. J. Song, G. Sun, J. Yu, Y. Si, B. Ding, Construction of ternary Ag@ZnO/TiO2 fibrous membranes with hierarchical nanostructures and mechanical flexibility for water purification. Ceram. Int. 46(1), 468–475 (2020)

    Article  CAS  Google Scholar 

  36. L.J. Yan, L. Wang, Y. Kang, C. Wang, Fabrication of TiO2/ZnO composite nanofibers with enhanced photocatalytic activity. J. Mater. Sci. Mater. Electron. 27, 7834–7838 (2016)

    Article  Google Scholar 

  37. C.C. Pei, W.W.-F. Leung, Photocatalytic degradation of Rhodamine B by TiO2/ZnO nanofibers under visible-light irradiation. Separ Purif Technol 114, 108–116 (2013)

    Article  CAS  Google Scholar 

  38. M.A. Habib, M.T. Shahadat, N.M. Bahadur, I.M.I. Ismail, A.J. Mahmood, Synthesis and characterization of ZnO-TiO2 nanocomposites and their application as photocatalysts. Int Nano Lett 5(3), 1–8 (2013)

    Google Scholar 

  39. J.D. Chen, W.S. Liao, Y. Jiang, D.N. Yu, M.L. Zou, H. Zhu, et al., Facile fabrication of ZnO/TiO2 heterogeneous nanofibres and their photocatalytic behaviour and mechanism towards Rhodamine B. Nanomater Nanotechnol 6, 9 (2016)

    Article  CAS  Google Scholar 

  40. X.L. Hu, G.S. Li, J.C. Yu, Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26, 3031 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. Z. Wang, B. Huang, Y. DaiI, P. Wang, Z. Zheng, H. Cheng, Relationship between microstructure and photocatalytic properties of nanomaterials. Z Kristallogr 225, 520–527 (2010)

    Article  CAS  Google Scholar 

  42. D.C. Onwudiwe, Nano-sized SnO2 by a facile nanosecond laser irradiation in aqueous solution. Mater Res Express 6, 125004 (2019)

    Article  CAS  Google Scholar 

  43. A.K. Sharma, R.K. Tiwari, M.S. Gaur, Nanophotocatalytic UV degradation system for organophosphorus pesticides in water samples and analysis by Kubista model. Arab. J. Chem. 9, S1755–S1S64 (2016)

    Article  CAS  Google Scholar 

  44. H. Zhou, H. Zhu, F. Xue, H. He, S. Wang, Cellulose-based amphoteric adsorbent for the complete removal of low-level heavy metal ions via a specialization and cooperation mechanism. Chem. Eng. J. 385, 123879 (2020)

    Article  CAS  Google Scholar 

  45. J.O. Amode, J.H. Santos, Z. Alam, A.H. Mirza, C.C. Mei, Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: Equilibrium and kinetics studies. Int J Ind Chem 7(3), 333–345 (2016)

    Article  CAS  Google Scholar 

  46. M.H. Abdellah, S.A. Nosier, A.H. El-Shazly, A.A. Mubarak, Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alex. Eng. J. 57(4), 3727–3735 (2018)

    Article  Google Scholar 

  47. B. Mandal, S.K. Ray, Removal of safranine T and brilliant cresyl blue dyes from water by carboxy methyl cellulose incorporated acrylic hydrogels: Isotherms, kinetics and thermodynamic study. J. Taiwan Inst. Chem. Eng. 60, 313–327 (2016)

    Article  CAS  Google Scholar 

  48. A. Jouali, A. Salhi, A. Aguedach, A. Aarfane, H. Ghazzaf, E.K. Lhadi, et al., Photo-catalytic degradation of methylene blue and reactive blue 21 dyes in dynamic mode using TiO2 particles immobilized on cellulosic fibers. J. Photochem. Photobiol. A Chem. 383, 112013 (2019)

    Article  CAS  Google Scholar 

  49. B. Sun, Y. Yuan, H. Li, X. Li, C. Zhang, F. Guo, et al., Waste-cellulose-derived porous carbon adsorbents for methyl orange removal. Chem. Eng. J. 371, 55–63 (2019)

    Article  CAS  Google Scholar 

  50. D. Olivo-Alanis, R.B. García-Reyes, M. Ramirez-Valencia, E.M. Castellanos Escamilla, A. García-González, F.J. Cerino-Córdova, et al., Effective photocatalytic mechanism on dye decolorization in different water matrices with phenolic resins as a photocatalyst under visible LED irradiation. J. Photochem. Photobiol. A Chem. 372, 296–308 (2019)

    Article  CAS  Google Scholar 

  51. R. Abirami, C.R. Kalaiselvi, L. Kungumadevi, T.S. Senthil, M. Kang, Synthesis and characterization of ZnTiO3 and Ag doped ZnTiO3 perovskite nanoparticles and their enhanced photocatalytic and antibacterial activity. J. Solid State Chem. 281, 121019 (2020)

    Article  CAS  Google Scholar 

  52. R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 127(18), 7143–7154 (2016)

    Article  CAS  Google Scholar 

  53. S. Alkaykh, A. Mbarek, E.E. Ali-Shattle, Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6(4), e03663 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  54. A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of methylene blue and methyl orange aqueous mixture. Appl. Catal. A Gen. 477, 83–92 (2014)

    Article  CAS  Google Scholar 

  55. P.S. Chauhan, R. Kant, A. Rai, A. Gupta, S. Bhattacharya, Facile synthesis of ZnO/GO nanoflowers over Si substrate for improved photocatalytic decolorization of MB dye and industrial wastewater under solar irradiation. Mater. Sci. Semicond. Process. 89, 6–17 (2019)

    Article  CAS  Google Scholar 

  56. H.Y. He, Y. Yan, J.F. Huang, J. Lu, Rapid photodegradation of methyl blue on magnetic Zn1−xCoxFe2O4 nanoparticles synthesized by hydrothermal process. Sep. Purif. Technol. 136, 36–41 (2014)

    Article  CAS  Google Scholar 

  57. Z. Lu, Q. Wang, R. Yin, B. Chen, Z. Li, A novel TiO2/foam cement composite with enhanced photodegradation of methyl blue. Constr. Build. Mater. 129, 159–162 (2016)

    Article  CAS  Google Scholar 

  58. D. Zhang, F. Dai, P. Zhang, Z. An, Y. Zhao, L. Chen, The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Mater. Sci. Eng. C 96, 684–692 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Research Foundation (NRF) and Department of Science and Technology-Republic of South Africa (DST) for financial support under the “Biorefineries Consortium”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian C. Onwudiwe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyewo, O.A., Nevondo, N.G., Onwudiwe, D.C. et al. Photocatalytic degradation of methyl blue in water using sawdust-derived cellulose nanocrystals-metal oxide nanocomposite. J Inorg Organomet Polym 31, 2542–2552 (2021). https://doi.org/10.1007/s10904-020-01847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01847-5

Keywords

Navigation