Skip to main content
Log in

Structural, Microstructural, and Dielectric Properties of Nickel-Doped PbTiO3 Ceramics Synthesized by the Hydrothermal Process

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, an experimental study was conducted on the structural and dielectric properties for nickel-doped Pb1−xNixTiO3 (PNT) perovskite-based ceramics with varying nickel concentrations (x (wt) = 0%, 5%, 10%, 15%, 17%, and 20%). The ceramics were prepared using the hydrothermal process at low temperature, which was compared to the solid-state method. The precursors, in stoichiometric amounts, were placed in an alkaline environment using an autoclave and were heat-treated at 180°C for 24 h. The obtained powders underwent characterization after filtration, washing, and drying. X-ray diffraction analysis with Rietveld refinement highlighted that the powders crystallize in a tetragonal perovskite structure with P4mm space group and transform into a pseudo-cubic structure upon the introduction of nickel cations into the lattice. Scanning electron microscopy was used to observe the material structures at the micro level, revealing a homogeneous grain shape with a decrease in average grain size as the nickel concentration in the compound increased. Raman spectroscopy was employed to study the active phonon modes of the materials. The dielectric properties of the different Pb1−xNixTiO3 compositions were analyzed using dielectric spectroscopy in a temperature range from room temperature to 500°C, and at frequencies ranging from 1 kHz to 1.6 MHz. The results confirm the insertion of nickel cations into the PbTiO3 lattice and highlight the resulting enhanced dielectric constant (εr), transition temperature (TC), and dielectric loss (tan δ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.L. Ashwini Anantharaman, J.N. Ajeesha, and M.G. Baby, Effect of Structural, Electrical and Magneto-Optical Properties of CeMnxFe1-xO3-δ Perovskite Materials. Solid State Sci. 99, 105846 (2020). https://doi.org/10.1016/j.solidstatesciences.2019.02.007.

    Article  CAS  Google Scholar 

  2. A.K. Tomar, A. Joshi, G. Singh, and R.K. Sharma, Perovskite Oxides as Supercapacitive Electrode: Properties, Design and Recent Advances. Coord. Chem. Rev. 431, 213680 (2021). https://doi.org/10.1016/j.ccr.2020.213680.

    Article  CAS  Google Scholar 

  3. D. Zhang, X. Zhang, X. Li, Z. Liang, H. Xu, Z. Lv, X. Sang, and S. Li, Effect of BaO–CaO–SiO2 Addition on Dielectric and Electrocaloric Properties of Lead-Free 0.2Ba(Ti0.9Sn0.1)O3–0.8Ba(Zr0.18Ti0.82)O3 Bulk Ceramics. Solid State Sci. 119, 106684 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106684.

    Article  CAS  Google Scholar 

  4. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko, Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 15(6), 3692 (2015). https://doi.org/10.1021/nl5048779.

    Article  CAS  Google Scholar 

  5. F. El Bachraoui, Y. Tamraoui, S. Louihi, J. Alami, R. Shahbazian-Yassar, Y. Yuan, K. Amine, and B. Manoun, Unusual Superparamagnetic Behavior in Bulk Ba0.198La0.784Ti0.096Fe0.8O3-δ. Mater. Res. Bull. 137, 111187 (2021). https://doi.org/10.1016/j.materresbull.2020.111187.

    Article  CAS  Google Scholar 

  6. F. El Bachraoui, Z. Chchiyai, Y. Tamraoui, H. El Moussaoui, J. Alami, and B. Manoun, Optical and Magnetic Properties of Perovskite Materials: Ba0.3La0.7Ti0.3Fe0.7O3 and Ba0.1La0.9Ti0.1Fe0.9O3. J. Rare Earths 40(4), 652 (2022). https://doi.org/10.1016/j.jre.2021.05.008.

    Article  CAS  Google Scholar 

  7. H.W. Shin and J.Y. Son, Ferroelectric Domain Wall Current Corresponding to Ferroelectric Domain Structures of BaTiO3 Nanodots Fabricated by Dip-Pen Nanolithography. Ceram. Int. 49(2), 2786 (2023). https://doi.org/10.1016/j.ceramint.2022.09.260.

    Article  CAS  Google Scholar 

  8. P. Godara, A. Agarwal, N. Ahlawat, and S. Sanghi, Crystal Structure Refinement, Dielectric and Magnetic Properties of Sm Modified BiFeO3 Multiferroic. J. Mol. Struct. 1097, 207 (2015). https://doi.org/10.1016/j.molstruc.2015.05.022.

    Article  CAS  Google Scholar 

  9. Su. Chao, X. Duan, J. Miao, Y. Zhong, W. Zhou, S. Wang, and Z. Shao, Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study. ACS Catal. 7(1), 388 (2017). https://doi.org/10.1021/acscatal.6b02303.

    Article  CAS  Google Scholar 

  10. P. Jena, D. Kumar, P.K. Patro, R.K. Lenka, and A.K. Singh, Structural Characterization and Electrical/Electrochemical Studies of Nd1-xBaxCo1-y(Fe, Ti)y O3-δ (0 ≤ x ≤ 03, y = 0, 02) Materials as Cathode for SOFCs Application. J. Solid-State Chem. 292, 121682 (2020). https://doi.org/10.1016/j.jssc.2020.121682.

    Article  CAS  Google Scholar 

  11. T. Ahmed, S.A. Khan, J.H. Bae, M. Habib, F. Akram, S.Y. Choi, A. Hussain, T.K. Song, Y.S. Sung, M.-H. Kim, and S. Lee, Role of Bi Chemical Pressure on Electrical Properties of BiFeO3–BaTiO3–Based Ceramics. Solid State Sci. 114, 106562 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106562.

    Article  CAS  Google Scholar 

  12. M. Zouhairi, E. Elghadraoui, H. Bali, T. Lamcharfi, and A. Elbasset, Dielectric Properties of Hydrothermally Processed Pb1-xLaxTi1-x/4O3 Ceramics. Asian J. Chem. 29, 1056 (2017). https://doi.org/10.14233/ajchem.2017.20406.

    Article  CAS  Google Scholar 

  13. N.H. Patel, M. Shah, D.D. Shah, and P.K. Mehta, Effect of Doping in SrTiO3:BiFeO3 Binary System. Mater. Today Proc. 47, 517 (2020). https://doi.org/10.1016/j.matpr.2020.10.173.

    Article  CAS  Google Scholar 

  14. E.H. Lahrar, O.E.L. Ghadraoui, A. Harrach, M. Zouhairi, T. Lamcharfi, and E.H. el Ghadraoui, Influence of Strontium on the Structural and Dielectric Properties of Hydrothermally Processed PbTiO3 Ceramic. Asian J. Chem. 32, 597 (2020). https://doi.org/10.14233/ajchem.2020.22363.

    Article  CAS  Google Scholar 

  15. E.H. Lahrar, O. el Ghadraoui, M. Zouhairi, A. Harrach, T. Lamcharfi, and E.H. el Ghadraoui, Synthesis and Structural and Dielectric Properties of Ca-Doped PbTiO3 Ceramics Prepared by a Hydrothermal Method. New J. Chem. 45, 13293 (2021). https://doi.org/10.1039/d1nj02693c.

    Article  CAS  Google Scholar 

  16. N. Sareecha, W.A. Shah, M.L. Mirza, A.S. Saleemi, S.A. Tirmizi, and M.S. Awan, Fabrication and Electrical Investigations of PbTiO3 Ceramics with Pb/Ti Contents Through Solid State Sintering Reaction Method. Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.04.058.

    Article  Google Scholar 

  17. H.D. Shah, D.A. Dadhania, and J.A. Bhalodia, Synthesis, Structural, Ferroelectric, and Dielectric Properties of (1–x) PbTiO3 + (x) La0.7Sr0.3MnO3 (x = 0, 0.1, 0.2 & 0.3) Composite Samples. Mater. Sci. Eng. B 285, 115926 (2022). https://doi.org/10.1016/j.mseb.2022.115926.

    Article  CAS  Google Scholar 

  18. Y. Xiang, C. Chen, L. Tang, L. Qin, H. Zhu, and W. Cao, Dielectric, Elastic and Piezoelectric Properties of Single Domain Pb(Zn1/3Nb2/3)O3–6.5%PbTiO3 Single Crystal with 3m Symmetry Measured Using One Sample. Scripta Mater. 194, 113634 (2021). https://doi.org/10.1016/j.scriptamat.2020.113634.

    Article  CAS  Google Scholar 

  19. B. Deka and S. Ravi, Study of Impedance Spectroscopy and Electric Modulus of PbTi1–xFexO3 (x = 0.0–0.3) Compounds. J. Alloys Compd. 720, 589 (2017). https://doi.org/10.1016/j.jallcom.2017.05.295.

    Article  CAS  Google Scholar 

  20. Z. Chchiyai, F. El Bachraoui, Y. Tamraoui, E.M. Haily, L. Bih, A. Lahmar, M. El Marssi, J. Alami, and B. Manoun, Effect of Cobalt Doping on the Crystal Structure, Magnetic, Dielectric, Electrical and Optical Properties of PbTi1−xCoxO3-δ Perovskite Materials. J. Alloys Compd. 927, 166979 (2022). https://doi.org/10.1016/j.jallcom.2022.166979.

    Article  CAS  Google Scholar 

  21. H. Ed-Dnoub, O. el Ghadraoui, M. Zouhairi, A. Harrach, T. Lamcharfi, and E. H. el Ghadraoui (2019) Study of structural and dielectric properties of Nickel-doped BaTiO3 material. Mediterr. J. Chem. 8, 228. https://doi.org/10.13171/mjc8319051802hed.

  22. A. Blanco, J. Caroca, R. Tamayo, M. Flores, M. Romero-Sáez, R. Espinoza-González, and F. Gracia, CO2 methanation activity of Ni-doped perovskites. Fuel 320, 123954 (2022). https://doi.org/10.1016/j.fuel.2022.123954.

    Article  CAS  Google Scholar 

  23. L. Lutterotti, R. Vasin, and H.R. Wenk, Rietveld texture analysis from synchrotron diffraction images. I. Calibration and basic analysis. Powder Diffract. 29, 76 (2014). https://doi.org/10.1017/S0885715613001346.

    Article  CAS  Google Scholar 

  24. G. Caglioti, A. Paoletti, and F.P. Ricci, Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 3(4), 223 (1958). https://doi.org/10.1016/0369-643X(58)90029-X.

    Article  CAS  Google Scholar 

  25. J. Joseph, T.M. Vimala, V. Sivasubramanian, and V.R.K. Murthy, Structural investigations on Pb(ZrxT1−x)O3 solid solutions using the X-ray Rietveld method. J. Mater. Sci. 35, 1571 (2000). https://doi.org/10.1023/A:1004778223721.

    Article  CAS  Google Scholar 

  26. G. Burns and B.A. Scott, Lattice Modes in Ferroelectric Perovskites: PbTiO3. Phys. Rev. B 7, 3088 (1973). https://doi.org/10.1103/PhysRevB.7.3088.

    Article  CAS  Google Scholar 

  27. A. Singh, K. Sreenivas, R.S. Katiyar, and V. Gupta, Evidence of Pseudocubic Structure in Sol–Gel Derived Pb1−xCaxTiO3 (x=035–048) Ceramic by Dielectric and Raman Spectroscopy. J. Appl. Phys. 102, 074110 (2007). https://doi.org/10.1063/1.2785843.

    Article  CAS  Google Scholar 

  28. A. Kiraci and H. Yurtseven, Calculation of the Raman Frequency, Damping Constant (Linewidth) and the Relaxation Time Near the Tetragonal-Cubic Transition in PbTiO3. Optik 142, 311 (2017). https://doi.org/10.1016/j.ijleo.2017.06.011.

    Article  CAS  Google Scholar 

  29. J.S. Forrester, J.S. Zobec, D. Phelan, and E.H. Kisi, Synthesis of PbTiO3 Ceramics Using Mechanical Alloying and Solid-State Sintering. J. Solid-State Chem. 177, 3553 (2004). https://doi.org/10.1016/j.jssc.2004.06.005.

    Article  CAS  Google Scholar 

  30. D. Zheng, H. Deng, S. Si, Y. Pan, Q. Zhang, Y. Guo, P. Yang, and J. Chu, Modified structural, optical, magnetic and ferroelectric properties in (1–x)BaTiO3-xBaCo0.5Nb0.5O3-δ ceramics. Ceram. Int. 46(5), 6073 (2020). https://doi.org/10.1016/j.ceramint.2019.11.068.

    Article  CAS  Google Scholar 

  31. J. Singh and R.C. Singh, Structural, Optical, Dielectric and Transport Properties of Ball Mill Synthesized ZnO–V2O5 Nano-Composites. J. Mol. Struct. 1215, 128261 (2020). https://doi.org/10.1016/j.molstruc.2020.128261.

    Article  CAS  Google Scholar 

  32. Z. Chchiyai, F. El Bachraoui, Y. Tamraoui, L. Bih, A. Lahmar, A. Faik, J. Alami, and B. Manoun, Synthesis, Structural Refinement and Physical Properties of Novel Perovskite Ceramics Ba1-xBixTi1-xMnxO3 (x = 03 and 04). Mater. Chem. Phys. 262, 124302 (2021). https://doi.org/10.1016/j.matchemphys.2021.124302.

    Article  CAS  Google Scholar 

  33. S. Rani, N. Ahlawat, R. Punia, K.M. Sangwan, and S. Rani, Dielectric Relaxation and Conduction Mechanism of Complex Perovskite Ca0.9Sr0.1Cu3Ti3.95Zn0.05O12 ceramic. Ceram. Int. 44, 5996 (2018). https://doi.org/10.1016/j.ceramint.2017.12.187.

    Article  CAS  Google Scholar 

  34. K. Parida and R.N.P. Choudhary, Structural, Electrical, and Magnetic Characteristics of Chemically Synthesized Lead-Free Double Perovskite: BiMgFeCeO6. J. Supercond. Novel Magnet. 33, 3493–3500 (2020). https://doi.org/10.1007/s10948-020-05605-z.

    Article  CAS  Google Scholar 

  35. P. Kumar, B.P. Singh, T.P. Sinha, and N.K. Singh, Dielectric and impedance properties of Sr(Sm0.5Nb0.5)O3 ceramics. Solid State Sci. 13, 2060 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.09.011.

    Article  CAS  Google Scholar 

  36. B. Mohanty, S. Bhattacharjee, S.N. Sarangi, N.C. Nayak, R.K. Parida, and B.N. Parida, Dielectric, electrical and magnetic characteristics of BST modified BLFO lead free ceramic. J. Alloy. Compd. 863, 158060 (2021). https://doi.org/10.1016/j.jallcom.2020.158060.

    Article  CAS  Google Scholar 

  37. L. Mrharrab, Y. Ababou, S. Sayouri, and E. Ech-Chamikh, Structural and Dielectric Characterizations of Pb(ZrxTi1-x)O3 Ceramics. Int. Rev. Phys. 65, 1 (2014).

    Google Scholar 

  38. A. Badreldin, A.E. Abusrafa, and A. Abdel-Wahab, Oxygen-Deficient Perovskites for Oxygen Evolution Reaction in Alkaline Media: A Review. Emergent Mater. 3, 567 (2020). https://doi.org/10.1007/s42247-020-00123-z/Published.

    Article  CAS  Google Scholar 

  39. D. Viehland, M. Wuttig, and L.E. Cross, The Glassy Behavior of Relaxor Ferroelectrics. Ferroelectrics 120, 71 (1991). https://doi.org/10.1080/00150199108216802.

    Article  CAS  Google Scholar 

  40. L.H. Omari, L. Hajji, M. Haddad, T. Lamhasni, and C. Jama, Synthesis, Structural, Optical and Electrical Properties of La-Modified Lead Iron Titanate Ceramics for NTCR Thermo-Resistance-Based Sensors. Mater. Chem. Phys. 223, 60 (2019). https://doi.org/10.1016/j.matchemphys.2018.10.035.

    Article  CAS  Google Scholar 

  41. A. Bendahhou, P. Marchet, A. El-Houssaine, S. El Barkany, and M. Abou-Salama, Relationship Between Structural and Dielectric Properties of Zn-Substituted Ba5CaTi2−xZnxNb8O30 Tetragonal Tungsten Bronze. Cryst. Eng. Commun. 23, 163 (2021). https://doi.org/10.1039/D0CE01561J.

    Article  CAS  Google Scholar 

  42. M. Ren, X. Qian, Y. Chen, T. Wang, and Y. Zhao, Potential Lead Toxicity and Leakage Issues on Lead Halide Perovskite Photovoltaics. J. Hazard. Mater. 426, 127848 (2022). https://doi.org/10.1016/j.jhazmat.2021.127848.

    Article  CAS  Google Scholar 

  43. G. Schileo and G. Grancini, Lead or No Lead? Availability, Toxicity, Sustainability and Environmental Impact of Lead-Free Perovskite Solar Cells. J. Mater. Chem. 9, 67 (2021). https://doi.org/10.1039/D0TC04552G.

    Article  CAS  Google Scholar 

  44. A. Elbasset, T. Lamcharfi, F. Abdi, L. Mrharrab, and S. Sayouri, Effect of doping with cobalt or copper on the structure of lead titanate PT. Indian J. Sci. Technol. 8, 1 (2015). https://doi.org/10.1745/ijst/2015/v8i12/56348.

    Article  Google Scholar 

  45. B. Elouadi, M. Zriouil, J. Ravez, and P. Hagenmuller, Comparative study of Crystallographic and Ferroelectric Properties of the Non-stoichiometric LiNbO3 Type Phases in the Ternary Diagrams Li2O-M2O5-(M’O2)2 (M=Nb, Ta; M’=Ti, Zr). Ferroelectrics 56, 21 (2011). https://doi.org/10.1080/00150198408012710.

    Article  Google Scholar 

  46. P. Dubernet, and J. Ravez, Dielectric Study of KNbO3 Ceramics over a Large Range of Frequency (102–109Hz) and Temperature (300–800 K). Ferroelectrics 211, 51 (1997). https://doi.org/10.1080/00150199808232333.

    Article  Google Scholar 

  47. Fu. Chenjie, N. Chen, and Du. Guoping, Comparative Studies of Nickel Doping Effects at A and B Sites of BaTiO3 Ceramics on Their Crystal Structures and Dielectric and Ferroelectric Properties. Ceram. Int. 43(17), 15927 (2017). https://doi.org/10.1016/j.ceramint.2017.08.169.

    Article  CAS  Google Scholar 

  48. C. Rayssi, S.E. Kossi, J. Dhahri, and K. Khirouni, Frequency and Temperature-Dependence of Dielectric Permittivity and Electric Modulus Studies of the Solid Solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 01). RSC Adv. 8(31), 17139 (2018). https://doi.org/10.1039/C8RA00794B.

    Article  CAS  Google Scholar 

  49. N. Kumar and S. Chand, Effects of Temperature, Bias and Frequency on the Dielectric Properties and Electrical Conductivity of Ni/SiO2/p-Si/Al MIS Schottky Diodes. J. Alloy. Compd. 817, 153294 (2020). https://doi.org/10.1016/j.jallcom.2019.153294.

    Article  CAS  Google Scholar 

  50. T. Garg, M. Saleem, N. Kaurav, P. Choudhary, and A. Yadav, The Co1−xZnxCr2O4 [x = 00, 01] Chromite System: A Study of Structural and Frequency Dependent Room Temperature Dielectric Properties. Mater. Today: Proc. 1, 1 (2023). https://doi.org/10.1016/j.matpr.2023.05.539.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sakout.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakout, Y., El Ghadraoui, O., Lahrar, E.H. et al. Structural, Microstructural, and Dielectric Properties of Nickel-Doped PbTiO3 Ceramics Synthesized by the Hydrothermal Process. J. Electron. Mater. 53, 141–156 (2024). https://doi.org/10.1007/s11664-023-10741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10741-y

Keywords

Navigation