Skip to main content
Log in

Anticorrosive Polypyrrole/Barium Ferrite (PPy/BaFe12O19) Composites with Tunable Electrical Response for Electromagnetic Wave Absorption and Shielding Performance

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper highlights the suitability of PPy/BaFe12O19 composites with tunable electrical properties as well as anticorrosive properties for broadband electromagnetic interference (EMI) shielding applications. A PPy/BaFe12O19 composite was structurally and morphologically investigated using x-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy (SEM) techniques. Both electrical conducting and dielectric attributes have shown property modifications with varying concentrations of the dispersant, barium ferrite. The corrosion inhibition response of PPy/BaFe12O19 composites on an aluminum metal surface in 0.1 M NaOH solution was analyzed using atomic absorption spectroscopy, potentiodynamic polarization, and AC impedance spectroscopy. The morphological features reconfirming the corrosion inhibition nature of the composites were recorded using SEM. Furthermore, a mixed corrosion inhibition property was confirmed by potentiodynamic polarization plots. EMI shielding and microwave attenuation characteristics of the composites were investigated in the practically relevant microwave broadband frequency spectrum of 8–12 GHz (X-band). The efficiency of these anticorrosive composites towards the suppression of ever-increasing EMI has been confirmed by the observed shielding efficiency in the range of − 23 dB to − 27 dB (> 99% attenuation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P. Gahlout and V. Choudhary, EMI shielding response of polypyrrole-MWCNT/polyurethane composites. Synth. Met. 266, 116414 (2020). https://doi.org/10.1016/j.synthmet.2020.116414.

    Article  CAS  Google Scholar 

  2. Y. Gao and Z. Wang, Microwave absorption and electromagnetic interference shielding properties of Li-Zn ferrite-carbon nanotubes composite. J. Magn. Magn. Mater. 528, 167808 (2021). https://doi.org/10.1016/j.jmmm.2021.167808.

    Article  CAS  Google Scholar 

  3. L.R. Wang, M. Yu, P.A. Yang, S. Qi, and J. Fu, Synthesis of absorbing coating based on magnetorheological gel with controllable electromagnetic wave absorption properties. Smart Mater. Struct. 28, 1–15 (2019). https://doi.org/10.1088/1361-665X/ab06e8.

    Article  Google Scholar 

  4. N. Bahri-Laleh, K. Didehban, E. Yarahmadi, S.A. Mirmohammadi, and G. Wang, Microwave absorption properties of polyaniline/carbonyl iron composites. SILICON 10, 1337–1343 (2018). https://doi.org/10.1007/s12633-017-9609-y.

    Article  CAS  Google Scholar 

  5. N. Maruthi, M. Faisal, and N. Raghavendra, Conducting polymer based composites as efficient EMI shielding materials: a comprehensive review and future prospects. Synth. Met. 272, 116664 (2021). https://doi.org/10.1016/j.synthmet.2020.116664.

    Article  CAS  Google Scholar 

  6. V. Lalan and S. Ganesanpotti, Broadband electromagnetic response and enhanced microwave absorption in carbon black and magnetic Fe3O4 nanoparticles reinforced polyvinylidenefluoride composites. J. Electron. Mater. 49, 1666–1676 (2020). https://doi.org/10.1007/s11664-019-07635-3.

    Article  CAS  Google Scholar 

  7. H.K. Choudhary, R. Kumar, S.P. Pawar, S. Bose, and B. Sahoo, Effect of microstructure and magnetic properties of Ba-Pb-hexaferrite particles on EMI shielding behavior of Ba-Pb-hexaferrite-polyaniline-wax nanocomposites. J. Electron. Mater. 49, 1618–1629 (2020). https://doi.org/10.1007/s11664-019-07478-y.

    Article  CAS  Google Scholar 

  8. P. Gairola, L.P. Purohit, S.P. Gairola, P. Bhardwaj, and S. Kaushik, Enhanced electromagnetic absorption in ferrite and tantalum pentoxide based polypyrrole nanocomposite. Prog. Nat. Sci. Mater. Int. 29, 170–176 (2019). https://doi.org/10.1016/j.pnsc.2019.03.011.

    Article  CAS  Google Scholar 

  9. A. Garg, S. Goel, N. Kumari, A. Dubey, N. Eswara Prasad, and S. Tyagi, Development of SrFe12O19/Ti3SiC2 composites for enhanced microwave absorption. J. Electron. Mater. 49, 2233–2241 (2020). https://doi.org/10.1007/s11664-019-07922-z.

    Article  CAS  Google Scholar 

  10. Y. Zhang, Z. Wang, B. Zhang, G.L. Zhao, and S.M. Guo, The electromagnetic interference shielding effectiveness of high aspect-ratio SiC nanofibers/epoxy composites. RSC Adv. 5, 93499–93506 (2015). https://doi.org/10.1039/c5ra16007c.

    Article  CAS  Google Scholar 

  11. J. Cai, W. Wang, D. Pan, D. Young, H. Gu, and Z. Guo, Electrical transport in polyaniline-barium ferrite nanocomposites with negative giant magnetoresistance electrical transport in polyaniline-barium ferrite nanocomposites with negative giant magnetoresistance. J. Phys. Chem. C. (2020). https://doi.org/10.1021/acs.jpcc.0c05623.

    Article  Google Scholar 

  12. C. Veranitisagul, W. Wattanathana, W. Nantharak, P. Jantaratana, A. Laobuthee, and N. Koonsaeng, BaFe12O19 from thermal decomposition of bimetallic triethanolamine complex as magnetic filler for bioplastics. Mater. Chem. Phys. 177, 48–55 (2016). https://doi.org/10.1016/j.matchemphys.2016.03.038.

    Article  CAS  Google Scholar 

  13. F.Z. Enginsagirli, E.S. Kayali, and A.S. Sarac, Polypyrrole/barium titanate/poly(acrylonitrile-co-methylacrylate)-deposited cotton fabrics: electromagnetic shielding. J. Ind. Text. 47, 656–673 (2018). https://doi.org/10.1177/1528083716667260.

    Article  CAS  Google Scholar 

  14. S. Iqbal, J. Shah, R.K. Kotnala, and S. Ahmad, Highly efficient low cost EMI shielding by barium ferrite encapsulated polythiophene nanocomposite. J. Alloys Compd. 779, 487–496 (2019). https://doi.org/10.1016/j.jallcom.2018.11.307.

    Article  CAS  Google Scholar 

  15. H. Feng, D. Bai, L. Tan, N. Chen, and Y. Wang, Preparation and microwave-absorbing property of EP/BaFe12O19/PANI composites. J. Magn. Magn. Mater. 433, 1–7 (2017). https://doi.org/10.1016/j.jmmm.2016.12.118.

    Article  CAS  Google Scholar 

  16. J. Shen, K. Chen, L. Li, W. Wang, and Y. Jin, Fabrication and microwave absorbing properties of (Z-type barium ferrite/silica)@polypyrrole composites. J. Alloys Compd. 615, 488–495 (2014). https://doi.org/10.1016/j.jallcom.2014.06.096.

    Article  CAS  Google Scholar 

  17. A. Motamedi, R. Rahmanifard, and M. Adibi, Synthesis and microwave absorption characteristics of BaFe12O19/BaTiO3/MWCNT/polypyrrole quaternary composite. Synth. Met. 280, 116873 (2021). https://doi.org/10.1016/j.synthmet.2021.116873.

    Article  CAS  Google Scholar 

  18. J.H. Shen, K.Y. Chen, L.C. Li, Y. Ding, J.B. Li, and W.Q. Kong, Fabrication of Z-type barium ferrite/silica composites with enhanced microwave absorption. Sci. China Technol. Sci. 57, 1858–1864 (2014). https://doi.org/10.1007/s11431-014-5617-y.

    Article  CAS  Google Scholar 

  19. J.A. Hill, T. Markley, M. Forsyth, P.C. Howlett, and B.R.W. Hinton, Corrosion inhibition of 7000 series aluminum alloys with cerium diphenyl phosphate. J. Alloys Compd. 509, 1683–1690 (2011). https://doi.org/10.1016/j.jallcom.2010.09.151.

    Article  CAS  Google Scholar 

  20. O.K. Abiola, J.O.E. Otaigbe, and O.J. Kio, Gossipium hirsutum L. extracts as green corrosion inhibitor for aluminum in NaOH solution. Corros. Sci. 51, 1879–1881 (2009). https://doi.org/10.1016/j.corsci.2009.04.016.

    Article  CAS  Google Scholar 

  21. N. Raghavendra, Green compounds to attenuate aluminum corrosion in HCl activation: a necessity review. Chem. Africa 3, 21–34 (2020). https://doi.org/10.1007/s42250-019-00114-6.

    Article  CAS  Google Scholar 

  22. M.W. Kendig, A.J. Davenport, and H.S. Isaacs, The mechanism of corrosion inhibition by chromate conversion coatings from X-ray absorption near edge spectroscopy (Xanes). Corros. Sci. 34, 41–49 (1993). https://doi.org/10.1016/0010-938X(93)90257-H.

    Article  CAS  Google Scholar 

  23. N. Raghavendra and J. Ishwara Bhat, An environmentally friendly approach towards mitigation of al corrosion in hydrochloric acid by yellow colour ripe arecanut husk extract: introducing potential and sustainable inhibitor for material protection. J. Bio- Tribo-Corrosion (2018). https://doi.org/10.1007/s40735-017-0112-1.

    Article  Google Scholar 

  24. N. Raghavendra, Areca plant extracts as a green corrosion inhibitor of carbon steel metal in 3 M hydrochloric acid: gasometric, colorimetry and atomic absorption spectroscopy views. J. Mol. Eng. Mater. 06, 1850004 (2018). https://doi.org/10.1142/s2251237318500041.

    Article  CAS  Google Scholar 

  25. Y. Xie, X. Hong, Y. Gao, M. Li, J. Liu, J. Wang, and J. Lu, Synthesis and characterization of La/Nd-doped barium-ferrite/polypyrrole nanocomposites. Synth. Met. 162, 677–681 (2012). https://doi.org/10.1016/j.synthmet.2012.02.023.

    Article  CAS  Google Scholar 

  26. Y. Liu, R. Tai, M.G.B. Drew, and Y. Liu, Preparation and characterizations of active carbon/barium ferrite/polypyrrole composites. J. Mater. Sci. Mater. Electron. 28, 6448–6455 (2017). https://doi.org/10.1007/s10854-017-6330-y.

    Article  CAS  Google Scholar 

  27. C.K. Madhusudhan, K. Mahendra, B.S. Madhukar, T.E. Somesh, and M. Faisal, Multifunctional polypyrrole/multi-walled carbon nanotube composite material: dielectric, humidity sensing and broadband EMI shielding properties. Polym. Sci. Ser. B. 63, 280–290 (2021). https://doi.org/10.1134/S156009042103009X.

    Article  CAS  Google Scholar 

  28. M.J. Molaei, A. Ataie, S. Raygan, and S.J. Picken, The effect of different carbon reducing agents in synthesizing barium ferrite/magnetite nanocomposites. Mater. Chem. Phys. 219, 155–161 (2018). https://doi.org/10.1016/j.matchemphys.2018.07.027.

    Article  CAS  Google Scholar 

  29. R. Agrawal, J. Shah, G. Gupta, R. Srivastava, C. Sharma, and R. Kotnala, Significantly high electromagnetic shielding effectiveness in polypyrrole synthesized by eco-friendly and cost-effective technique. J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.49566.

    Article  Google Scholar 

  30. M. Sadeghinia, J.S. Shayeh, F. Fatemi, M. Rahmandoust, A. Ehsani, and M. Rezaei, Electrochemical study of perlite-barium ferrite/conductive polymer nano composite for super capacitor applications. Int. J. Hydrog. Energy 44, 28088–28095 (2019). https://doi.org/10.1016/j.ijhydene.2019.09.085.

    Article  CAS  Google Scholar 

  31. N. Maruthi, M. Faisal, N. Raghavendra, B.P. Prasanna, R. Manohara, and M. Revanasiddappa, Anticorrosive polyaniline-coated copper oxide (PANI/CuO) nanocomposites with tunable electrical properties for broadband electromagnetic interference shielding. Colloids Surf. A Physicochem. Eng. Asp. 621, 126611 (2021). https://doi.org/10.1016/j.colsurfa.2021.126611.

    Article  CAS  Google Scholar 

  32. A. Nayar, The Metals Databook (New York: McGraw-Hill, 1997).

    Google Scholar 

  33. S. Abraham, T. Prasankumar, K.V. Kumar, S. Zh, and S. Jose, Novel lead dioxide intercalated polypyrrole/graphene oxide ternary composite for high throughput supercapacitors. Mater. Lett. 273, 127943 (2020). https://doi.org/10.1016/j.matlet.2020.127943.

    Article  CAS  Google Scholar 

  34. R.H.V.B. Aaditya, B.M.B.B.V. Chaluvaraju, and U.P.R.M.V. Murugendrappa, Studies of thermo-electric power and dielectric modulus of polypyrrole/zirconium oxide-molybdenum trioxide (PZM) composites. J. Mater. Sci. Mater. Electron. 29, 6564–6578 (2018). https://doi.org/10.1007/s10854-018-8640-0.

    Article  CAS  Google Scholar 

  35. K.S.A. Ali, M.M. Ravikumar, J. Mohammed, N. Farouk, V. Mohanavel, and M. Ravichandran, Investigation of Ku band microwave absorption of three-layer BaFe12O19, carbon-fiber@Fe3O4, and graphene@BaFe12O19@Fe3O4 composite. J. Alloys Compd. 884, 161045 (2021). https://doi.org/10.1016/j.jallcom.2021.161045.

    Article  CAS  Google Scholar 

  36. A. Afzali, V. Mottaghitalab, S.S. Seyyed Afghahi, M. Jafarian, and Y. Atassi, Electromagnetic properties of absorber fabric coated with BaFe12O19/MWCNTs/PANi nanocomposite in X and Ku bands frequency. J. Magn. Magn. Mater. 442, 224–230 (2017). https://doi.org/10.1016/j.jmmm.2017.06.119.

    Article  CAS  Google Scholar 

  37. A.R. Sadrolhosseini, S. Shafie, H. Soleimani, and M.A. Mahdi, Polypyrrole-BaFe2O4 sensing layer for detection of strontium ion in aqueous solution using surface plasmon resonance curves fitting. Opt. Laser Technol. 140, 106970 (2021). https://doi.org/10.1016/j.optlastec.2021.106970.

    Article  CAS  Google Scholar 

  38. P. Xu, X. Han, C. Wang, H. Zhao, J. Wang, X. Wang, and B. Zhang, Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. J. Phys. Chem. B. 112, 2775–2781 (2008). https://doi.org/10.1021/jp710259v.

    Article  CAS  Google Scholar 

  39. B. Birsöz, A. Baykal, H. Sözeri, and M.S. Toprak, Synthesis and characterization of polypyrrole-BaFe12O19 nanocomposite. J. Alloys Compd. 493, 481–485 (2010). https://doi.org/10.1016/j.jallcom.2009.12.135.

    Article  CAS  Google Scholar 

  40. A. Bahadur, A. Saeed, S. Iqbal, M. Shoaib, I. Ahmad, M.S. ur Rahman, M.I. Bashir, M. Yaseen, and W. Hussain, Morphological and magnetic properties of BaFe12O19 nanoferrite: a promising microwave absorbing material. Ceram. Int. 43, 7346–7350 (2017). https://doi.org/10.1016/j.ceramint.2017.03.039.

    Article  CAS  Google Scholar 

  41. F. Inoue, R.A. Ando, C.M.S. Izumi, and P. Corio, Spectroscopic characterization of carbon nanotube-polypyrrole composites. J. Phys. Chem. C. 118, 18240–18248 (2014). https://doi.org/10.1021/jp505525k.

    Article  CAS  Google Scholar 

  42. M. Verma, A.P. Singh, P. Sambyal, B.P. Singh, S.K. Dhawan, and V. Choudhary, Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys. Chem. Chem. Phys. 17, 1610–1618 (2015). https://doi.org/10.1039/c4cp04284k.

    Article  CAS  Google Scholar 

  43. Y. Wang, Y. Huang, and J. Ding, Synthesis and electromagnetic absorption properties of polypyrrole/BaFe12O19-Ni0.8Zn0.2Fe2O4/Multi-walled carbon nanotube composites. Mater. Sci. Semicond. Process. 26, 632–641 (2014). https://doi.org/10.1016/j.mssp.2014.06.001.

    Article  CAS  Google Scholar 

  44. T.-M. Wu, and S.-H. Lin, Synthesis, characterization, and electrical properties of polypyrrole/multiwalled carbon nanotube composites. J. Polym. Sci. Part A Polym. Chem. 46, 6449–6457 (2006). https://doi.org/10.1002/pola.21724.

    Article  CAS  Google Scholar 

  45. M.T. Ramesan and V. Santhi, Synthesis, characterization, conductivity and sensor application study of polypyrrole/silver doped nickel oxide nanocomposites. Compos. Interfaces 6440, 1–17 (2018). https://doi.org/10.1080/09276440.2018.1439626.

    Article  CAS  Google Scholar 

  46. B.C. Brightlin and S. Balamurugan, The effect of post annealing treatment on the citrate sol-gel derived nanocrystalline BaFe12O19 powder: structural, morphological, optical and magnetic properties. Appl. Nanosci. 6, 1199–1210 (2016). https://doi.org/10.1007/s13204-016-0531-1.

    Article  CAS  Google Scholar 

  47. W.J. Feng, X. Zhao, W.Q. Zheng, J.T. Gang, Y. Cao, and H. Yang, Microwave absorption properties of BaFe12O19 prepared in different temperature with polyaniline nanocomposites. Adv. Mater. Res. 1142, 211–215 (2017). https://doi.org/10.4028/www.scientific.net/amr.1142.211.

    Article  Google Scholar 

  48. J. Li, Y. Hong, S. He, W. Li, H. Bai, Y. Xia, G. Sun, and Z. Zhou, A neutron diffraction investigation of high valent doped barium ferrite with wideband tunable microwave absorption. J. Adv. Ceram. 11, 263–272 (2022). https://doi.org/10.1007/s40145-021-0529-3.

    Article  CAS  Google Scholar 

  49. K.R. Nandan and A.R. Kumar, Structural and electrical properties of Ca0.9Dy0.1MnO3 prepared by sol-gel technique. J. Mater. Res. Technol. 8, 2996–3003 (2019). https://doi.org/10.1016/j.jmrt.2017.05.020.

    Article  CAS  Google Scholar 

  50. K.R. Nandan and A.R. Kumar, Electrical properties of Ca0.925Ce0.075Mn1−xFexO3 (x = 0.1–0.3) prepared by sol–gel technique. J. Mater. Sci. Mater. Electron. 27, 13179–13191 (2016). https://doi.org/10.1007/s10854-016-5464-7.

    Article  CAS  Google Scholar 

  51. S. Sahoo, U. Dash, S.K.S. Parashar, and S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J. Adv. Ceram. 2, 291–300 (2013). https://doi.org/10.1007/s40145-013-0075-8.

    Article  CAS  Google Scholar 

  52. K.R. Nandan, L.S. Lobo, G. Murugesan, N. Maruthi, and A. Ruban Kumar, Dielectric relaxation in CaMnO3 ceramics synthesized by sol–gel method. J. Mater. Sci. Mater. Electron. 33, 8355–8360 (2021). https://doi.org/10.1007/s10854-021-06185-x.

    Article  CAS  Google Scholar 

  53. C.K. Madhusudhan, K. Mahendra, B.S. Madhukar, T.E. Somesh, and M. Faisal, Incorporation of graphite into iron decorated polypyrrole for dielectric and EMI shielding applications. Synth. Met. 267, 116450 (2020). https://doi.org/10.1016/j.synthmet.2020.116450.

    Article  CAS  Google Scholar 

  54. P. Sambyal, S.K. Dhawan, P. Gairola, S.S. Chauhan, and S.P. Gairola, Synergistic effect of polypyrrole/BST/RGO/Fe3O4 composite for enhanced microwave absorption and EMI shielding in X-band. Curr. Appl. Phys. 18, 611–618 (2018). https://doi.org/10.1016/j.cap.2018.03.001.

    Article  Google Scholar 

  55. N. Maruthi, M. Faisal, N. Raghavendra, B.P. Prasanna, K.R. Nandan, K.Y. Kumar, and S.B.B. Prasad, Polyaniline/V2O5 composites for anticorrosion and electromagnetic interference shielding. Mater. Chem. Phys. 259, 124059 (2021). https://doi.org/10.1016/j.matchemphys.2020.124059.

    Article  CAS  Google Scholar 

  56. N. Maruthi, M. Faisal, N. Raghavendra, B.P. Prasanna, S.R. Manohara, and M. Revanasiddappa, Promising EMI shielding effectiveness and anticorrosive properties of PANI-Nb2O5 nanocomposites: multifunctional approach. Synth. Met. 275, 116744 (2021). https://doi.org/10.1016/j.synthmet.2021.116744.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to PES University, Bengaluru-560100, India, and the Oxford College of Engineering, Bommanahalli, Bengaluru-560068, India, for the support and encouragement. We would like to thank CeNSE, MNCF, IISc Bangalore for providing sample characterization facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Faisal, N. Maruthi or Narasimha Raghavendra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadar, C.H.A., Faisal, M., Maruthi, N. et al. Anticorrosive Polypyrrole/Barium Ferrite (PPy/BaFe12O19) Composites with Tunable Electrical Response for Electromagnetic Wave Absorption and Shielding Performance. J. Electron. Mater. 52, 2080–2093 (2023). https://doi.org/10.1007/s11664-022-10179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10179-8

Keywords

Navigation