Skip to main content
Log in

Electrical properties of Ca0.925Ce0.075Mn1−xFexO3 (x = 0.1–0.3) prepared by sol–gel technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this present study, nanocrystalline perovskite structure CaMnO3 substituted with Ce and Fe was prepared by a sol–gel technique using citric acid as a chelating agent at 800 °C. The compound was analyzed by powder X-ray diffraction technique and found to be single phased orthorhombic perovskite structure with space group Pnma. The morphology of the synthesized material study is carried out by using SEM and EDX confirmed the chemical compositions of the sample. Electrical measurements were performed to determine the conductive nature of the sample, and the conductivity increases with increasing Fe concentration. Electrode polarization effect was apparently seen in the Nyquist plot and the conductivity measurements. Dielectric relaxations were present in the sample was attributed to the existence of oxygen vacancy, migration in the ions and the Ea is calculated using Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Dai, J. Feng, Z. Wang, T. Jiang, W. Sun, J. Qiao, K. Sun, Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5−xNixMo0.5O6−δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. J. Mater. Chem. A 1(45), 14147–14153 (2013)

    Article  Google Scholar 

  2. A. Kompany, T. Ghorbani-Moghadam, S. Kafash, M.E. Abrishami, Frequency dependence of Néel temperature in CaMnO3−δ ceramics: synthesized by two different methods. J. Magn. Magn. Mater. 349, 135–139 (2014)

    Article  Google Scholar 

  3. B. Singh, Structural, transport, magnetic and magnetoelectric properties of CaMn1−xFexO3−δ (0.0 ≤ x ≤ 0.4). RSC Adv. 5(50), 39938–39945 (2015)

    Article  Google Scholar 

  4. S. Zhao, J. Zheng, F. Jiang, Y. Song, M. Sun, X. Song, Co-precipitation synthesis and microwave absorption properties of CaMnO3 doped by La and Co. J. Mater. Sci. Mater. Electron. 26(11), 8603–8608 (2015)

    Article  Google Scholar 

  5. C. Lucas, I. Eiroa, M.R. Nunes, P.A. Russo, M.R. Carrott, M.I. da Silva Pereira, M.M. Jorge, Preparation and characterization of Ca1−xCexMnO3 perovskite electrodes. J. Solid State Electrochem. 13(6), 943–950 (2009)

    Article  Google Scholar 

  6. D. Varshney, I. Mansuri, Influence of Ce doping on structural and transport properties of Ca1−xCexMnO3 (x = 0.2) manganite. J. Low Temp. Phys. 162(1–2), 52–61 (2011)

    Article  Google Scholar 

  7. R. Kabir, T. Zhang, R. Donelson, D. Wang, R. Tian, T.T. Tan, S. Li, Thermoelectric properties of Yb and Nb codoped CaMnO3. Physica Status Solidi (a) 211(5), 1200–1206 (2014)

    Article  Google Scholar 

  8. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, K. Koumoto, Thermoelectrical properties of A-site substituted Ca1−xRexMnO3 system. J. Appl. Phys. 100(8), 084911-1 (2006)

    Article  Google Scholar 

  9. Y. Wang, Y. Sui, W. Su, High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R = La, Pr, …, Yb). J. Appl. Phys. 104, 093703 (2008)

    Article  Google Scholar 

  10. B. Raveau, Y.M. Zhao, C. Martin, M. Hervieu, A. Maignan, Mn-site doped CaMnO3: creation of the CMR effect. J. Solid State Chem. 149(1), 203–207 (2000)

    Article  Google Scholar 

  11. X.J. Liu, Z.Q. Li, P. Wu, H.L. Bai, E.Y. Jiang, The effect of Fe doping on structural, magnetic and electrical transport properties of CaMn1−xFexO3 (x = 0–0.35). Solid State Commun. 142(9), 525–530 (2007)

    Article  Google Scholar 

  12. A.C. Larson, R.B. Von Dreele (1994) Gsas. General Structure Analysis System. LANSCE, MS-H805, Los Alamos, New Mexico

  13. M. Soleymani, A. Moheb, E. Joudaki, High surface area nano-sized La0.6Ca0.4MnO3 perovskite powder prepared by low temperature pyrolysis of a modified citrate gel. Open Chem. 7(4), 809–817 (2009)

    Article  Google Scholar 

  14. C. Silveira, M.E. Lopes, M.R. Nunes, M.M. Jorge, Synthesis and electrical properties of nanocrystalline Ca1−xEuxMnO3±δ (0.1 ≤ x ≤ 0.4) powders prepared at low temperature using citrate gel method. Solid State Ion. 180(40), 1702–1709 (2010)

    Article  Google Scholar 

  15. V. Kumar, A. Gaur, U.K. Gaur, Low temperature magnetic and anomalous high temperature dielectric response of Dy–Ni co-doped hexagonal YMnO3 ceramics. J. Magn. Magn. Mater. 384, 241–246 (2015)

    Article  Google Scholar 

  16. U. Adem, N. Mufti, A.A. Nugroho, G. Catalan, B. Noheda, T.T.M. Palstra, Dielectric relaxation in YMnO3 single crystals. J. Alloys Compd. 638, 228–232 (2015)

    Article  Google Scholar 

  17. M. Vadivel, R.R. Babu, M. Arivanandhan, K. Ramamurthi, Y. Hayakawa, Role of SDS surfactant concentrations on the structural, morphological, dielectric and magnetic properties of CoFe2O4 nanoparticles. RSC Adv. 5(34), 27060–27068 (2015)

    Article  Google Scholar 

  18. S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J. Adv. Ceram. 2(3), 291–300 (2013)

    Article  Google Scholar 

  19. G. Murugesan, R. Nithya, S. Kalainathan, S. Hussain, High temperature dielectric relaxation anomalies in Ca0.9Nd0.1Ti0.9Al0.1O3−δ single crystals. RSC Adv. 5(96), 78414–78421 (2015)

    Article  Google Scholar 

  20. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5−xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44(22), 10457–10466 (2015)

    Article  Google Scholar 

  21. L.N. Liu, C.C. Wang, C.M. Lei, T. Li, G.J. Wang, X.H. Sun et al., Relaxor-and phase-transition-like behaviors in ZnO single crystals at high temperatures. Appl. Phys. Lett. 102(11), 112907 (2013)

    Article  Google Scholar 

  22. B.B. Mohanty, P.S. Sahoo, M.P.K. Sahoo, R.N.P. Choudhary, R.N.P. Choudhary, R.N.P. Choudhary, R.N.P. Choudhary, Impedance spectroscopy of Ba5GdTi3V7O30. J. Mod. Phys. 3(05), 357 (2012)

    Article  Google Scholar 

  23. R. Chourasia, O.P. Shrivastava, Crystal structure and impedance study of samarium substituted perovskite: La1−xSmxMnO3 (x = 0.1–0.3). Solid State Sci. 14(3), 341–348 (2012)

    Article  Google Scholar 

  24. R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek, P.K. Datta, Electron-hopping modes in NiMn(2)O(4+δ) materials. Appl. Phys. Lett. 86(7), 501–503 (2005)

    Article  Google Scholar 

  25. D.K. Pradhan, R.N.P. Choudhary, B.K. Samantaray, Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int. J. Electrochem. Sci. 3(5), 597–608 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. S. Kalainathan for providing dielectric facilities and also thank VIT University for their constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ruban Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandan, K.R., Kumar, A.R. Electrical properties of Ca0.925Ce0.075Mn1−xFexO3 (x = 0.1–0.3) prepared by sol–gel technique. J Mater Sci: Mater Electron 27, 13179–13191 (2016). https://doi.org/10.1007/s10854-016-5464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5464-7

Keywords

Navigation