Skip to main content

Advertisement

Log in

Improved Sodium Storage Performance of Zn-Substituted P3-Na0.67Ni0.33Mn0.67O2 Cathode Materials for Sodium-Ion Batteries

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A series of P3-phase Na0.67Ni0.33−xZnxMn0.67O2 (x = 0, 0.06, 0.09, and 0.12) samples have been synthesized and investigated as cathode materials for sodium-ion batteries. The partial substitution of Ni with Zn in the P3-phase Na0.67Ni0.33Mn0.67O2 lattice can markedly improve the electrochemical performance. A Na0.66Ni0.24Zn0.09Mn0.67O2 cathode material with an optimized Zn content of x = 0.09 can deliver an initial reversible discharge specific capacity of 127.4 mA h g−1 and Coulomb efficiency of 89.2% at 10 mA g−1 in a voltage range of 2.0−4.25 V. When the current density increases to 100 mA g−1, Na0.67Ni0.24Zn0.09Mn0.67O2 delivers an initial reversible discharge specific capacity of 106.1 mA g−1, and capacity retention is 68.05% after 50 cycles, which is much higher than those of other samples with different Zn content. The structural characterization reveals that Zn-substituted Na0.67Ni0.24Zn0.09Mn0.67O2 increases the lattice parameters and crystallite size, and decreases the lattice strain, which is beneficial for the structural stability whether before or after the cycle. In addition, the charge–transfer impedance (Rct) and cathodic electrolyte interphase impedance (RCEI) of Na0.67Ni0.24Zn0.09Mn0.67O2 are significantly decreased after cycling compared with the undoped Zn electrode, which should be partially responsible for the improvement of the electrochemical performance of the Zn-doped electrode.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.L. Liang, W.W. Wu, L. Xu, and X.H. Wu, Highly stable na metal anode enabled by a multifunctional hard carbon skeleton. Carbon 176, 219 (2021).

    Article  CAS  Google Scholar 

  2. J.L. Liang, Y.F. Huang, Y.Z. Huang, M. Xu, J.W. Lei, H. Tao, X.H. Wu, and W.W. Wu, Hydrothermal synthesis of urchin-like NiCo2O4/stereotaxically constructed graphene microspheres for ultrahigh-rate lithium and sodium storage. Powder. Technol. 380, 115 (2021).

    Article  CAS  Google Scholar 

  3. J.H. Liao, F.P. Zhang, Y. Lu, J. Ren, W.W. Wu, Z. Xu, and X.H. Wu, Sodium compensation and interface protection effects of Na3PS3O for sodium-ion batteries with P2-type oxide cathodes. Chem. Eng. J. 437, 135275 (2022).

    Article  CAS  Google Scholar 

  4. W.J. Shi, D. Zhang, X.M. Meng, C.X. Bao, S.D. Xu, L. Chen, X.M. Wang, S.B. Liu, and Y.C. Wu, Low-strain reticular sodium manganese oxide as an ultrastable cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 12, 14174 (2020).

    Article  CAS  Google Scholar 

  5. L.H.J. Raijmakers, D.L. Danilov, R.A. Eichel, and P.H.L. Notten, A review on various temperature-indication methods for Li-ion batteries. Appl. Energ. 240, 918 (2019).

    Article  CAS  Google Scholar 

  6. T.R. Juran and M. Smeu, TiSe2 cathode for beyond Li-ion batteries. J. Power. Sour. 436, 226813 (2019).

    Article  CAS  Google Scholar 

  7. H.B. Yu, Y.K. Shi, B. Yuan, Y.Z. He, L.N. Qiao, J.J. Wang, Q.F. Lin, Z. Chen, and E.S. Han, Recent developments of polyimide materials for lithium-ion battery separators. Ionics 27, 907 (2021).

    Article  CAS  Google Scholar 

  8. C. Li, X.Y. Xu, T.T. Song, X.Y. Zhu, Y.T. Li, H. Jia, and Y. Liu, Fabrication of GeS-graphene composites for electrode materials in lithium-ion batteries. Mater. Res. Express 8, 115013 (2021).

    Article  CAS  Google Scholar 

  9. L. Yang, S.H. Luo, Y.F. Wang, Y. Zhan, Q. Wang, Y.H. Zhang, X. Liu, W.N. Mu, and F. Teng, Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries. Chem. Eng. J. 404, 126578 (2021).

    Article  CAS  Google Scholar 

  10. T. He, L. Chen, Y.F. Su, Y. Lu, L.Y. Bao, G. Chen, Q.Y. Zhang, S. Chen, and F. Wu, The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-rich cathode materials. J. Power. Sour. 441, 227195 (2019).

    Article  CAS  Google Scholar 

  11. Y. Yu, W.J. Kong, Q.Y. Li, D. Ning, G. Schuck, G. Schumacher, C.J. Su, and X.F. Liu, Understanding the multiple effects of TiO2 coating on NaMn0.33Fe0.33Ni0.33O2 cathode material for Na-ion batteries. ACS Appl. Energy. Mater. 3, 933 (2020).

    Article  CAS  Google Scholar 

  12. C.Y. Chang, Y. Li, W. He, G.B. Li, W.J. Guo, P.H. Zhu, M.M. Yao, and J.J. Feng, NaVPO4F prepared under air as a cathode material for sodium-ion batteries. Mater. Lett. 209, 82 (2017).

    Article  CAS  Google Scholar 

  13. V.K. Kumar, S. Ghosh, S. Biswas, and S.K. Martha, Pitch-derived soft-carbon-wrapped NaVPO4F composite as a potential cathode material for sodium-ion batteries. ACS Appl. Energy. Mater. 4, 4059–4069 (2021).

    Article  CAS  Google Scholar 

  14. T. Matsuda, M. Takachi, and Y. Moritomo, A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem. Commun. 49, 2750 (2013).

    Article  CAS  Google Scholar 

  15. B. Paulitsch, J. Yun, and A.S. Bandarenka, Electrodeposited Na2VOx[Fe(CN)6] films as a cathode material for aqueous Na-ion batteries. ACS Appl. Mater. Interfaces. 9, 8107 (2017).

    Article  CAS  Google Scholar 

  16. X.D. Ma, X.H. Wu, Y. Liu, W.W. Wu, Z.Y. Pan, and P.K. Shen, Toward a high-energy-density cathode with enhanced temperature adaptability for sodium-ion batteries: a case study of Na3MnZr(PO4)3 microspheres with embedded dual-carbon networks. ACS Appl. Mater. Interfaces. 13, 21390 (2021).

    Article  CAS  Google Scholar 

  17. X.D. Ma, J.Y. Xia, X.H. Wu, Z.Y. Pan, and P.K. Shen, Remarkable enhancement in the electrochemical activity of maricite NaFePO4 on high-surface-area carbon cloth for sodium-ion batteries. Carbon 146, 78 (2019).

    Article  CAS  Google Scholar 

  18. X.D. Ma, X.H. Wu, and P.K. Shen, Rational design of Na4Fe3(PO4)2(P2O7) nanoparticles embedded in graphene: toward fast sodium storage through the pseudocapacitive effect. ACS Appl. Energy. Mater. 1, 6268 (2018).

    Article  Google Scholar 

  19. X.H. Wu, G.M. Zhong, and Y. Yang, Sol-gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction. J. Power. Sources. 327, 666 (2016).

    Article  CAS  Google Scholar 

  20. X.D. Ma, Z.Y. Pan, X.H. Wu, and P.K. Shen, Na4Fe3(PO4)2(P2O7)@NaFePO4@C core-double-shell architectures on carbon cloth: a high-rate, ultrastable, and flexible cathode for sodium ion batteries. Chem. Eng. J. 365, 132 (2019).

    Article  CAS  Google Scholar 

  21. L. Rakočević, S. Štrbac, J. Potočnik, M. Popović, D. Jugović, and I.S. Simatović, The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. Ceram. Int. 47, 4595 (2021).

    Article  Google Scholar 

  22. D. Lu, Z.J. Yao, Y.Q. Li, Y. Zhong, X.L. Wang, D. Xie, X.H. Xia, C.D. Gu, and J.P. Tu, Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries. J. Colloid Interf. Sci. 565, 218 (2020).

    Article  CAS  Google Scholar 

  23. Y.F. Dong, J.L. Xu, M.Y. Chen, Y.W. Guo, G.D. Zhou, N. Li, S. Zhou, and C.P. Wong, Self-assembled NaV6O15 flower-like microstructures for high-capacity and long-life sodium-ion battery cathode. Nano Energy 68, 104357 (2020).

    Article  CAS  Google Scholar 

  24. Z. Yang, Y. Jiang, L.Z. Deng, T. Wang, S. Chen, and Y.H. Huang, A high-voltage honeycomb-layered Na4NiTeO6 as cathode material for Na-ion batteries. J. Power. Sour. 360, 319 (2017).

    Article  CAS  Google Scholar 

  25. J.L. Xu, J.Z. Chen, K. Zhang, N.N. Li, L. Tao, and C.P. Wong, Nax(Cu–Fe–Mn)O2 system as cathode materials for Na-ion batteries. Nano Energy 78, 105142 (2020).

    Article  CAS  Google Scholar 

  26. H. Guo, M.X. Avdeev, K. Sun, X.B. Ma, H.L. Wang, Y.S. Hu, and D.F. Chen, Pentanary transition-metals Na-ion layered oxide cathode with highly reversible O3–P3 phase transition. Chem. Eng. J. 412, 128704 (2021).

    Article  CAS  Google Scholar 

  27. M. Chandra, R. Shukla, M. Rashid, A. Gupta, S. Basu, and R.S. Dhaka, Synthesis and physical properties of NaxTO2 (T=Mn, Co) nanostructures for cathode materials in Na-ion batteries. Mater. Res. Bull. 105, 178 (2018).

    Article  CAS  Google Scholar 

  28. Z. Zhou, Z. Luo, Z. He, J. Zheng, and Y. Li, A novel hollow porous structure designed for Na0.44Mn2/3Co1/6Ni1/6O2 cathode material of sodium-ion batteries. J. Power. Sour. 479, 228788 (2020).

    Article  CAS  Google Scholar 

  29. K.T. Kim, and J.T. Son, New observation structural change from O3 to P2 type by changing sodium contents for Na-ion batteries. J. Nanosci. Nanotechnol. 19, 1364–1367 (2019).

    Article  CAS  Google Scholar 

  30. J.Y. Li, H.Y. Lü, X.H. Zhang, Y.M. Xing, G. Wang, H.Y. Guan, and X.L. Wu, P2-Type Na0.53MnO2 nanorods with superior rate capabilities as advanced cathode material for sodium ion batteries. Chem. Eng. J. 316, 499 (2017).

    Article  CAS  Google Scholar 

  31. F. Gu, T. Sun, X. Yao, M. Shui, and J. Shu, Studies on the improved electro-chemical performance and the sodium ion migration mechanism of Na0·44MnO2-CNT electrodes for aqueous sodium batteries. J. Phys. Chem. Solids. 149, 109771 (2021).

    Article  CAS  Google Scholar 

  32. M. Chandra, R. Shukla, R. Saroha, A.K. Panwar, A. Gupta, S. Basu, and R.S. Dhaka, Physical properties and electrochemical performance of Zn-substituted Na0.44Mn1−xZnxO2 nanostructures as cathode in Na-ion batteries. Ceram. Int. 44, 21127 (2018).

    Article  CAS  Google Scholar 

  33. T.R. Chen, T. Sheng, Z.G. Wu, J.T. Li, E.H. Wang, C.J. Wu, H.T. Li, X.D. Guo, B.H. Zhong, L. Huang, and S.G. Sun, Cu2+ dual-doped layer-tunnel hybrid Na0.6Mn1−xCuxO2 as a cathode of sodium-ion battery with enhanced structure stability, electrochemical property, and air stability. ACS Appl. Mater. Interfaces. 10, 10147 (2018).

    Article  CAS  Google Scholar 

  34. V.H. Nguyen, L.T.N. Huynh, T.H. Nguyen, T.P. Vu, M.L.P. Le, A. Grag, and V.M. Tran, Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries. J. Appl. Electrochem. 48, 793 (2018).

    Article  CAS  Google Scholar 

  35. D. Zhang, W.J. Shi, Y.W. Yan, S.D. Xu, L. Chen, X.M. Wang, and S.B. Liu, Fast and scalable synthesis of durable Na0.44MnO2 cathode material via an oxalate precursor method for Na-ion batteries. Electrochim. Acta 258, 1035–1043 (2017).

    Article  CAS  Google Scholar 

  36. Y.H. Liu, D. Wang, J. Liu, Y.X. Liu, S.Y. Gao, Q. Hu, Z.G. Wu, X.C. Chen, B.H. Zhong, and X.D. Guo, Surface modification of layer-tunnel hybrid Na0.6MnO2 cathode with open tunnel structure Na2Ti6O13. J. Alloys. Compd. 849, 156441 (2020).

    Article  CAS  Google Scholar 

  37. H.D. Hou, B.H. Gan, Y.D. Gong, N. Chen, and C.W. Sun, P2-Type Na0.67Ni0.23Mg0.1Mn0.67O2 as a high-performance cathode for a sodium-ion battery. Inorg. Chem. 55, 9033 (2016).

    Article  CAS  Google Scholar 

  38. X. Wu, J. Guo, D. Wang, G. Zhong, M.J. McDonald, and Y. Yang, P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. J. Power. Sour. 281, 18–26 (2015).

    Article  CAS  Google Scholar 

  39. W. Chen, W. Wu, X. Wu, T. Li, J. Wu, and H. Zhang, Controlled growth of large-area arrays of al-substituted CoNiZn ferrite rods with high saturation magnetization by solvothermal method. J. Mater. Sci. Mater. Electron. 11, 7874–7883 (2017).

    Article  Google Scholar 

  40. W. Chen, D.S. Liu, W.W. Wu, H.X. Zhang, and J. Wu, Structure and magnetic properties evolution of rod-like Co0.5Ni0.25Zn0.25DyxFe2−xO4 synthesized by solvothermal method. J. Magn. Magn. Mater. 422, 49 (2017).

    Article  CAS  Google Scholar 

  41. S. Maddukuri, P. Valerie, and V.V. Upadhyayula, Synthesis and electrochemical study of new P3 type layered Na0.6Ni0.25Mn0.5Co0.25O2 for sodium-ion batteries. ChemistrySelect 2, 5660 (2017).

    Article  CAS  Google Scholar 

  42. Q. Li, Y. Guo, S. Wei, M. Xu, X. Wu, and W. Wu, Improved lithium storage performance of (Ni0.1Co0.7Mn0.2)3O4@void@ N-doped carbon via the synergistic effect between void space structure and N-doped carbon layer. J. Mater. Sci. Mater. Electron. 32, 19552–19567 (2021).

    Article  CAS  Google Scholar 

  43. R. Luo, F. Wu, M. Xie, Y. Ying, J.H. Zhou, Y.X. Huang, Y.S. Ye, L. Li, and R.J. Chen, Habit plane-driven P2-type manganese-based layered oxide as long cycling cathode for Na-ion batteries. J. Power. Sour. 383, 80 (2018).

    Article  CAS  Google Scholar 

  44. V. Gajraj, R. Azmi, M.S.D. Darma, S. Indris, H. Ehrenberg, and C.R. Mariappan, Correlation between structural, electrical and electrochemical performance of Zn doped high voltage spinel LiNi0.5-xZnxMn1.5O4 porous microspheres as a cathode material for Li-ion batteries. Ceram. Int. 47, 35275 (2021).

    Article  CAS  Google Scholar 

  45. Z.Y. Li, R. Gao, J.C. Zhang, X.L. Zhang, Z.B. Hu, and X.F. Liu, New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer. J. Mater. Chem. A. 4, 3453 (2016).

    Article  CAS  Google Scholar 

  46. L.Y. Xian, M. Li, D.P. Qiu, C. Qiu, C. Yue, F. Wang, and R. Yang, P3-type layered Na0.26Co1−xMnxO2 cathode induced by Mn doping for high-performance sodium-ion batteries. J. Alloys. Compd. 905, 163965 (2022).

    Article  CAS  Google Scholar 

  47. D. Wang, C. Shi, Y.P. Deng, Z. Wu, Z. Yang, Y. Zhong, Y. Jiang, B. Zhong, L. Huang, X. Guo, and Z. Chen, A fundamental understanding of the Fe/Ti doping induced structure formation process to realize controlled synthesis of layer-tunnel Na0.6MnO2 cathode. Nano Energy 70, 104539 (2020).

    Article  CAS  Google Scholar 

  48. Y.F. Huang, Y.Z. Huang, K.T. Li, W. Chen, X.H. Wu, W.W. Wu, L.L. Huang, and Q. Zhao, Synthesis and electrochemical properties of NixCo3−xO4 with porous hierarchical structures for Na-ion batteries. J. Electron. Mater. 49, 5508 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant no. 22169002), Guangxi Science and Technology Major Project (Grant no. AA19254022), and the Chongzuo Key Research and Development Program of China (Grant no. 20210701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuehang Wu or Wenwei Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liao, J., Tang, Z. et al. Improved Sodium Storage Performance of Zn-Substituted P3-Na0.67Ni0.33Mn0.67O2 Cathode Materials for Sodium-Ion Batteries. J. Electron. Mater. 52, 864–876 (2023). https://doi.org/10.1007/s11664-022-10045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10045-7

Keywords

Navigation