Skip to main content
Log in

Improved lithium storage performance of (Ni0.1Co0.7Mn0.2)3O4@Void@N-doped carbon via the synergistic effect between void space structure and N-doped carbon layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The material with sufficient void space structure can buffer the volumetric expansion of active materials during charge/discharge process. Nitrogen-doped carbon (NC) layer on the surface of active materials can enhance the electronic conductivity and reactivity of active materials. Herein, we synthesize (Ni0.1Co0.7Mn0.2)3O4 (NCMO)@Void@NC composite. When evaluated as anode materials for LIBs, NCMO@Void@NC composite can deliver a discharge-specific capacity of 773.7 mA h g−1 at 0.5 A g−1 in the 387th cycle, which corresponds to 91.16% of the 2nd discharge specific capacity. Coulombic efficiency of 99.19% can still be obtained in the 387th cycle. By contrast, bare NCMO can only deliver a discharge specific capacity of 535 mA h g−1 at 0.5 A g−1 in the 285th cycle. Electrochemical performances of NCMO@Void@NC composite are significantly higher than those of the bare NCMO, attributed that void space structure and NC layer in NCMO@Void@NC composite can create a strong synergistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Amine, A. Daali, X.W. Zhou, X. Liu, Y.Z. Liu, Y. Ren, X.Y. Zhang, L.K. Zhu, S. Al-Hallaj, Z.H. Chen, G.L. Xu, K. Amine, Nano Energy 74, 104849 (2020)

    Article  CAS  Google Scholar 

  2. H.J. Qi, Y.Y. Ren, S.Y. Guo, Y.Y. Wang, S.J. Li, Y. Hu, F. Yan, A.C.S. Appl, Mater. Interfaces 12, 591–600 (2020)

    Article  CAS  Google Scholar 

  3. T. Kim, W.T. Song, D.Y. Son, L.K. Ono, Y.B. Qi, J. Mater. Chem. A 7, 942–2964 (2019)

    Google Scholar 

  4. J.M. Wu, A. Mackenzie, N. Sharma, Green Chem. 22, 2244 (2020)

    Article  CAS  Google Scholar 

  5. A. Manthiram, Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-15355-0

    Article  Google Scholar 

  6. J.L. Liang, Y. Ning, X.H. Wu, W. Chen, W.W. Wu, K.T. Wang, Mater. Lett. 263, 127231 (2020)

    Article  CAS  Google Scholar 

  7. J.Y. Xia, F.P. Zhang, J.L. Liang, K.X. Fang, W.W. Wu, X.H. Wu, J. Alloys Compd. 853, 157371 (2021)

    Article  CAS  Google Scholar 

  8. Y.F. Huang, Y.Z. Huang, K.T. Li, W. Chen, X.H. Wu, W.W. Wu, L.L. Huang, Q. Zhao, J. Electron. Mater. 49, 5508–5522 (2020)

    Article  CAS  Google Scholar 

  9. X.D. Ma, J.Y. Xia, X.H. Wu, Z.Y. Pan, P.K. Shen, Carbon 146, 78–87 (2019)

    Article  CAS  Google Scholar 

  10. W. Chen, W.W. Wu, Z.Y. Pan, X.H. Wu, H.X. Zhang, J. Alloys Compd. 763, 257–266 (2018)

    Article  CAS  Google Scholar 

  11. R. Reece, C. Lekakou, P.A. Smith, A.C.S. Appl, Mater. Interfaces 12, 25683–25692 (2020)

    Article  CAS  Google Scholar 

  12. R. BoopathiRaja, M. Parthibavarman, J. Alloys Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  13. X.D. Ma, Z.Y. Pan, X.H. Wu, P.K. Shen, Chem. Eng. J. 365, 132–141 (2019)

    Article  CAS  Google Scholar 

  14. X.D. Ma, X.H. Wu, P.K. Shen, A.C.S. Appl, Energy Mater. 1, 6268–6278 (2018)

    Google Scholar 

  15. X.H. Wu, W. Chen, J. Key, W.W. Wu, Powder Technol. 323, 424–432 (2018)

    Article  CAS  Google Scholar 

  16. X.F. Luo, N. Li, X.Y. Guo, K. Wu, J. Solid State Chem. 296, 122020 (2021)

    Article  CAS  Google Scholar 

  17. M. Tabuchi, R. Kataoka, K. Yazawa, Mater. Res. Bull. 137, 111178 (2021)

    Article  CAS  Google Scholar 

  18. K.K. Surthi, A. Tyagi, K.K. Kar, R. Janakarajan, J. Phys. Chem. Solids 148, 109779 (2021)

    Article  CAS  Google Scholar 

  19. A. Yadav, B. De, S.K. Singh, P. Sinha, K.K. Kar, A.C.S. Appl, Mater. Interfaces 11, 7974–7980 (2019)

    Article  CAS  Google Scholar 

  20. P. Bhattacharya, J.H. Lee, K.K. Kar, H.S. Park, Chem. Eng. J. 369, 422–431 (2019)

    Article  CAS  Google Scholar 

  21. A. Yadav, K.K. Kar, Chem. Eng. J. 401, 126034 (2020)

    Article  CAS  Google Scholar 

  22. K.K. Surthi, K.K. Kar, R. Janakarajan, Chem. Eng. J. 399, 125858 (2020)

    Article  CAS  Google Scholar 

  23. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Prog. Energy Combust. Sci. 75, 100786 (2019)

    Article  Google Scholar 

  24. P. Zhang, J. Liu, J. Wu, W. Wang, C. Zhou, S. Guo, S. Li, Y. Yang, L. Chen, Mater. Today Energy 17, 100451 (2020)

    Article  Google Scholar 

  25. F. Wang, R. Song, H. Song, X. Chen, J. Zhou, Z. Ma, M. Li, Q. Lei, Carbon 81, 314–321 (2015)

    Article  CAS  Google Scholar 

  26. B.Z. Wu, X.Z. Jia, Y.L. Wang, J.X. Hu, E.L. Gao, Z. Liu, J. Mater. Chem. A 7, 17357 (2019)

    Article  CAS  Google Scholar 

  27. Q.G. Han, Z. Yi, Y. Cheng, Y.M. Wu, L.M. Wang, RSC Adv. 6, 15279–15285 (2016)

    Article  CAS  Google Scholar 

  28. H.L. Chen, P.S. Wu, J.J. Wu, ACS Sustainable Chem. Eng. 7, 17100–17106 (2019)

    Article  CAS  Google Scholar 

  29. T.P. Gao, K.W. Wong, K.M. Ng, Energy Storage Mater. 25, 210–216 (2020)

    Article  Google Scholar 

  30. D. Mukherjee, Y.K. Guruprasada Gowda, H.M.N. Kotresh, S. Sampath, A.C.S. Appl, Mater. Interfaces 9, 194–195 (2017)

    Article  CAS  Google Scholar 

  31. W.S. Chang, C.M. Park, J.H. Kim, Y.U. Kim, G.J. Jeong, H.J. Sohn, Energy Environ. Sci. 5, 6895–6899 (2012)

    Article  CAS  Google Scholar 

  32. L.L. Gu, W.H. Xie, S. Bai, B.L. Liu, S. Xue, Q. Li, D.Y. He, Appl. Surf. Sci. 368, 298–302 (2016)

    Article  CAS  Google Scholar 

  33. Y.X. Shi, X.F. Pan, B. Li, M.M. Zhao, H. Pang, Chem. Eng. J. 343, 427–446 (2018)

    Article  CAS  Google Scholar 

  34. Q. Li, H.S. Li, Q.T. Xia, Z.Q. Hu, Y. Zhu, S.S. Yan, C. Ge, Q.H. Zhang, X.X. Wang, X.T. Shang, S.T. Fan, Y.Z. Long, L. Gu, G.X. Miao, G.H. Yu, J.S. Moodera, Nat. Mater. (2021). https://doi.org/10.1038/s41563-020-0756-y

    Article  Google Scholar 

  35. Y.L. Zhang, W.Q. Cao, Y.Z. Cai, J.C. Shu, M.S. Cao, Inorg. Chem. Front. 6, 961–968 (2019)

    Article  CAS  Google Scholar 

  36. J.R. Huang, W. Wang, X.R. Lin, C.P. Gu, J.Y. Liu, J. Power Sources 378, 677–684 (2018)

    Article  CAS  Google Scholar 

  37. L.J. Wang, B. Liu, S.H. Ran, L.M. Wang, L.N. Gao, F.Y. Qu, D. Chen, G.Z. Shen, J. Mater. Chem. A 1, 2139–2143 (2013)

    Article  CAS  Google Scholar 

  38. G. Zhou, C. Wu, Y.H. Wei, C.C. Li, Q.W. Lian, C. Cui, W.F. Wei, L.B. Chen, Electrochim. Acta 222, 1878–1886 (2016)

    Article  CAS  Google Scholar 

  39. C. Han, W.Q. Cao, M.S. Cao, Inorg. Chem. Front. 7, 4101–4112 (2020)

    Article  CAS  Google Scholar 

  40. S. Abouali, M.A. Garakani, Z.L. Xu, J.K. Kim, Carbon 102, 262–272 (2016)

    Article  CAS  Google Scholar 

  41. L.Q. Fan, J.L. Huang, Y.L. Wang, C.L. Geng, S.J. Sun, Y.F. Huang, J.H. Wu, J. Energy Storage 30, 101427 (2020)

    Article  Google Scholar 

  42. Y.W. Zhang, X.Y. Wang, Q.L. Zhao, Y.Q. Fu, H. Wang, H.B. Shu, Electrochim. Acta 180, 866–872 (2015)

    Article  CAS  Google Scholar 

  43. M.Y. Wang, X. Yu, L. Hou, A. Gagnoud, Y. Fautrelle, R. Moreau, X. Li, Chem. Eng. J. 351, 930–938 (2018)

    Article  CAS  Google Scholar 

  44. J. Yang, X.H. Liu, J.L.Y. Tian, X. Ma, B.F. Wang, W.J. Li, Q.G. Wang, RSC Adv. 7, 21061–21067 (2017)

    Article  CAS  Google Scholar 

  45. T. Li, X.H. Li, Z.X. Wang, H.J. Guo, Q.Y. Hu, W.J. Peng, Electrochim. Acta 209, 456–463 (2016)

    Article  CAS  Google Scholar 

  46. Q.Q. Ren, F.D. Yu, L.L. Zheng, B.S. Yin, Z.B. Wang, K. Ke, Ceram. Int. 45, 7552–7559 (2019)

    Article  CAS  Google Scholar 

  47. L.W. Yin, Z.W. Zhang, Z.Q. Li, F.B. Hao, Q. Li, C.X. Wang, R.H. Fan, Y.X. Qi, Adv. Funct. Mater. 24, 4176–4185 (2014)

    Article  CAS  Google Scholar 

  48. H.B. Kong, Y.S. Wu, W.Z. Hong, C.S. Yan, Y.Y. Zhao, G. Chen, Energy Storage Mater. 24, 610–617 (2020)

    Article  Google Scholar 

  49. W.H. Hu, M.B. Zheng, B.Y. Xu, Y. Wei, W. Zhu, Q. Li, H. Pang, J. Mater. Chem. A 9, 3880 (2021)

    Article  CAS  Google Scholar 

  50. P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, R.C. Che, Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102812

    Article  Google Scholar 

  51. Z. Liu, T. Lu, T. Song, X. Yu, X. Lou, U. Paik, Energy Environ. Sci. 10, 1576–1580 (2017)

    Article  Google Scholar 

  52. W. Chen, W.W. Wu, S.Q. Liu, J.W. Xu, D.S. Liu, X.H. Wu, Y. Zhou, J. Wu, Mater. Sci. Semicond. Process. 39, 544–550 (2015)

    Article  CAS  Google Scholar 

  53. W. Chen, W.W. Wu, C. Zhou, S.F. Zhou, M.Y. Li, Y. Ning, J. Electron. Mater. 47, 2110–2119 (2018)

    Article  CAS  Google Scholar 

  54. J.Y. Xia, W.W. Wu, K.X. Fang, X.H. Wu, Carbon 157, 693–702 (2020)

    Article  CAS  Google Scholar 

  55. J.L. Liang, Y.F. Huang, Y.Z. Huang, M. Xu, J.W. Lei, H. Tao, X.H. Wu, W.W. Wu, Powder Technol. 380, 115–125 (2021)

    Article  CAS  Google Scholar 

  56. Y. Li, W. Yang, Z.Q. Tu, X.J. Tian, L.Q. Hou, Z.H. Xiao, B. Jiang, N. Wu, Q. Li, X. Wang, Y.F. Li, J. Alloys Compd. 857, 157626 (2021)

    Article  CAS  Google Scholar 

  57. J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, A.C.S. Appl, Mater. Interfaces 5, 981–988 (2013)

    Article  CAS  Google Scholar 

  58. Z.C. Ju, G.Y. Ma, Y.L. Zhao, Z. Xing, Y.H. Qiang, Y.T. Qian, Part. Part. Syst. Charact. 32, 1012–1019 (2015)

    Article  CAS  Google Scholar 

  59. H.J. Liu, S.H. Bo, W.J. Cui, F. Li, C.X. Wang, Y.Y. Xia, Electrochim. Acta 53, 6497–6503 (2008)

    Article  CAS  Google Scholar 

  60. C.Y. Ding, W.W. Zhou, X.Y. Wang, B. Shi, D. Wang, P.Y. Zhou, G.W. Wen, Chem. Eng. J. 332, 479–485 (2018)

    Article  CAS  Google Scholar 

  61. D.F. Qiu, G. Bu, B. Zhao, Z.X. Lin, L. Pu, L.J. Pan, Y. Shi, Mater. Lett. 119, 12–15 (2014)

    Article  CAS  Google Scholar 

  62. Y.D. Mo, Q. Ru, X. Song, L.Y. Guo, J.F. Chen, X.H. Hou, S.J. Hu, Carbon 109, 616–623 (2016)

    Article  CAS  Google Scholar 

  63. M. Kheradmandfard, H. Minouei, N. Tsvetkov, A.K. Vayghan, S.F. Kashani-Bozorg, G. Kim, S.I. Hong, D.-E. Kim, Mater. Chem. Phys. 262, 124 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Key Program Projects of Research and Development of Guangxi (Grant No. AB19110024), Innovation Project of Guangxi Graduate Education (YCSW2021045), and Guangxi University Student Innovation Foundation of China (Grant No. 202010593184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Guo, Y., Wei, S. et al. Improved lithium storage performance of (Ni0.1Co0.7Mn0.2)3O4@Void@N-doped carbon via the synergistic effect between void space structure and N-doped carbon layer. J Mater Sci: Mater Electron 32, 19552–19567 (2021). https://doi.org/10.1007/s10854-021-06474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06474-5

Navigation