Skip to main content

Advertisement

Log in

Recent developments of polyimide materials for lithium-ion battery separators

  • Review Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polyimide (PI) is a kind of favorite polymer for the production of the membrane due to its excellent physical and chemical properties, including thermal stability, chemical resistance, insulation, and self-extinguishing performance. We review the research progress of PI separators in the field of energy storage—the lithium-ion batteries (LIBs), focusing on PI separators containing different groups and compounding with different substances. This review will help to optimize the PI separator material for the LIBs and favor understanding the preparation-groups, structure-performance relationship of porous separators in LIBs. Therefore, the advantages of PI separators in lithium-ion batteries are introduced in detail and the development of PI separators to the lithium-ion batteries is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Jin Y, Zhu B, Lu Z et al (2017) Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater 7(23):1700715.1–1700715.17

    Article  Google Scholar 

  2. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  PubMed  Google Scholar 

  3. Zhao C, Lu Y, Chen L et al (2019) Flexible Na batteries. InfoMat 2(1):126–138

    Article  Google Scholar 

  4. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  5. Nunes-Pereira J, Lopes AC, Costa CM, Rodrigues LC, Silva MM, Lanceros-Méndez S (2013) Microporous membranes of NaY zeolite/poly(vinylidene fluoride–trifluoroethylene) for Li-ion battery separators. J Electroanal Chem 689(2):223–232

    Article  CAS  Google Scholar 

  6. Manthiram A, Chung SH, Zu C (2015) Lithium–sulfur batteries: progress and prospects. Adv Mater 27(12):1980–2006

    Article  CAS  PubMed  Google Scholar 

  7. Cai Y, Cao X, Luo Z, Fang G, Liu F, Zhou J, Pan A, Liang S (2018) Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling. Adv Sci (Weinh) 5(9):1800680

    Article  Google Scholar 

  8. Zhang Y, Song YZ, Yuan JJ, Yin X, Sun CC, Zhu BK (2018) Polypropylene separator coated with a thin layer of poly (lithium acrylate-co-butyl acrylate) for high-performance lithium-ion batteries. J Appl Polym Sci 135(26):46423

    Article  Google Scholar 

  9. Liao H, Zhang H, Hong H, Li Z, Qin G, Zhu H, Lin Y (2016) Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries. J Membr Sci 514:332–339

    Article  CAS  Google Scholar 

  10. Costa C, Leones R, Silva MM et al (2014) Influence of different salts in poly (vinylidene fluoride-co-trifluoroethylene) electrolyte separator membranes for battery applications. J Electroanal Chem 727:125–134

    Article  CAS  Google Scholar 

  11. Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5(1):128–134

    Article  CAS  PubMed  Google Scholar 

  12. Yuriar-Arredondo K, Armstrong MR, Shan B, Zeng W, Xu W, Jiang H, Mu B (2018) Nanofiber-based Matrimid organogel membranes for battery separator. J Membr Sci 546:158–164

    Article  CAS  Google Scholar 

  13. Zhang J, Xiang Y, Jamil MI, Lu J, Zhang Q, Zhan X, Chen F (2018) Polymers/zeolite nanocomposite membranes with enhanced thermal and electrochemical performances for lithium-ion batteries. J Membr Sci 564:753–761

    Article  CAS  Google Scholar 

  14. Qian J, Adams BD, Zheng J, Xu W, Henderson WA, Wang J, Bowden ME, Xu S, Hu J, Zhang JG (2016) Anode-free rechargeable lithium metal batteries. Adv Funct Mater 26(39):7094–7102

    Article  CAS  Google Scholar 

  15. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7(12):3857–3886

    Article  CAS  Google Scholar 

  16. Shi C, Zhang P, Huang S, He X, Yang P, Wu D, Sun D, Zhao J (2015) Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries. J Power Sources 298:158–165

    Article  CAS  Google Scholar 

  17. Chen W, Liu Y, Ying M et al (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2 -(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135

    Article  CAS  Google Scholar 

  18. Li Y-H, Wu X-L, Kim J-H, Xin S, Su J, Yan Y, Lee JS, Guo YG (2013) A novel polymer electrolyte with improved high-temperature-tolerance up to 170 C for high-temperature lithium-ion batteries. J Power Sources 244:234–239

    Article  CAS  Google Scholar 

  19. Wang Q, Song W-L, Wang L, Song Y, Shi Q, Fan LZ (2014) Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries. Electrochim Acta 132:538–544

    Article  CAS  Google Scholar 

  20. Shi C, Dai J, Xiu S et al (2016) A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2 O3 particles for lithium-ion batteries. J Membr Sci 517:91–99

    Article  CAS  Google Scholar 

  21. Wang H, Wu J, Cai C, Guo J, Fan H, Zhu C, Dong H, Zhao N, Xu J (2014) Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries. ACS Appl Mater Interfaces 6(8):5602–5608

    Article  CAS  PubMed  Google Scholar 

  22. Myung-Hyun R, Min LY, Jung-Ki P et al (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries. Adv Mater 23(27):3066–3070

    Article  Google Scholar 

  23. Pan L, Wang H, Wu C, Liao C, Li L (2015) Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl Mater Interfaces 7(29):16003–16010

    Article  CAS  PubMed  Google Scholar 

  24. Lee J, Lee C-L, Park K, Kim ID (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217

    Article  CAS  Google Scholar 

  25. Miao Y-E, Zhu G-N, Hou H, Xia YY, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86

    Article  CAS  Google Scholar 

  26. Yan X, Wang Y, Tao Y et al (2016) Polyimide binder by combining with polyimide separator for enhancing the electrochemical performance of lithium ion batteries. Electrochim Acta 216:1–7

    Article  CAS  Google Scholar 

  27. Smith SA, Williams BP, Joo YL (2017) Effect of polymer and ceramic morphology on the material and electrochemical properties of electrospun PAN/polymer derived ceramic composite nanofiber membranes for lithium ion battery separators. J Membr Sci 526:315–322

    Article  CAS  Google Scholar 

  28. Li H, Wu D, Wu J, Dong LY, Zhu YJ, Hu X (2017) Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv Mater 29(44):1703548

    Article  Google Scholar 

  29. Hu F, Song T (2017) Application of functionalized ether in lithium ion batteries. RSC Adv 7(85):54203–54212

    Article  CAS  Google Scholar 

  30. Chen X, Wang Z, Xu H, Zhou H, Zhou M, Li Y (2020) Study on molding process of ether anhydride type polyimide materials. IOP Conference Series: Materials Science and Engineering 772:012037

    Article  CAS  Google Scholar 

  31. Cao L, Ping A, Xu Z et al (2016) Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J Electroanal Chem 767:34–39

    Article  CAS  Google Scholar 

  32. Zhang H, Lin CE, Zhou MY, John AE, Zhu BK (2016) High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim Acta 187:125–133

    Article  CAS  Google Scholar 

  33. Zou X, Lu Q, Zhong Y, Liao K, Zhou W, Shao Z (2018) Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li–O2/air batteries workable under hurdle conditions. Small 14(34):1801798

    Article  Google Scholar 

  34. Zhao C-Z, Zhang X-Q, Cheng X-B, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q (2017) An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci 114(42):11069–11074

    Article  CAS  PubMed  Google Scholar 

  35. Li D, Zhang H, Li X (2018) Porous polyetherimide membranes with tunable morphology for lithium-ion battery. J Membr Sci 565:42–49

    Article  CAS  Google Scholar 

  36. Xu H, Li M, Han K, Xiao J, Chen X, Li Y (2019) Study on preparation and properties of polyimide lithium battery separator. IOP Conference Series: Materials Science and Engineering 493:012080

    Article  CAS  Google Scholar 

  37. Jeong H-S, Kim D-W, Jeong YU, Lee SY (2010) Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J Power Sources 195(18):6116–6121

    Article  CAS  Google Scholar 

  38. Li M, Zhang Z, Yin Y, Guo W, Bai Y, Zhang F, Zhao B, Shen F, Han X (2020) Novel polyimide separator prepared with two porogens for safe lithium-ion batteries. ACS Appl Mater Interfaces 12(3):3610–3616

    Article  CAS  PubMed  Google Scholar 

  39. Jiang W, Liu Z, Kong Q, Yao J, Zhang C, Han P, Cui G (2013) A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 232:44–48

    Article  CAS  Google Scholar 

  40. Zhai L, Yang S, Fan L (2012) Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines. Polymer 53(16):3529–3539

    Article  CAS  Google Scholar 

  41. Liaw D-J, Wang K-L, Huang Y-C, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974

    Article  CAS  Google Scholar 

  42. Kong L, Yan Y, Qiu Z, Zhou Z, Hu J (2018) Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries. J Membr Sci 549:321–331

    Article  CAS  Google Scholar 

  43. Qiu Z, Wang J, Zhang Q, Zhang S, Ding M, Gao L (2006) Synthesis and properties of soluble polyimides based on isomeric ditrifluoromethyl substituted 1, 4-bis (4-aminophenoxy) benzene. Polymer 47(26):8444–8452

    Article  CAS  Google Scholar 

  44. Wang H, Wang T, Yang S, Fan L (2013) Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 54(23):6339–6348

    Article  CAS  Google Scholar 

  45. Tan J, Kong L, Qiu Z et al (2018) Flexible, high-wettability and thermostable separator based on fluorinated polyimide for lithium-ion battery. J Solid State Electrochem 22(8):1–11

    Google Scholar 

  46. Zha J-W, Jia H-J, Wang H-Y, Dang ZM (2012) Tailored ultralow dielectric permittivity in high-performance fluorinated polyimide films by adjusting nanoporous characterisitics. J Phys Chem C 116(44):23676–23681

    Article  CAS  Google Scholar 

  47. Fei S, Wang T, Yang S et al (2010) Synthesis and characterization of sulfonated polyimides bearing sulfonated aromatic pendant group for DMFC applications. Polymer 51(17):3887–3898

    Article  Google Scholar 

  48. Kim M, Park JH (2012) Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery. J Power Sources 212:22–27

    Article  CAS  Google Scholar 

  49. Liu H, Dai Z, Xu J, Guo B, He X (2014) Effect of silica nanoparticles/poly (vinylidene fluoride-hexafluoropropylene) coated layers on the performance of polypropylene separator for lithium-ion batteries. Journal of Energy Chemistry 23(5):582–586

    Article  Google Scholar 

  50. Zhang Z, Yuan W, Li L (2018) Enhanced wettability and thermal stability of nano-SiO2/poly (vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries. Particuology 37:91–98

    Article  CAS  Google Scholar 

  51. Shekarian E, Jafari Nasr MR, Mohammadi T, Bakhtiari O, Javanbakht M (2019) Preparation of 4A zeolite coated polypropylene membrane for lithium-ion batteries separator. J Appl Polym Sci 136(32):47841

    Article  Google Scholar 

  52. Li H, Lin F, Wang H, Wu H, Yang Y, Yu L, Liu W, Luo D (2020) Enhanced thermal stability and wettability of an electrospun fluorinated poly(aryl ether ketone) fibrous separator for lithium-ion batteries. New J Chem 44(10):3838–3846

    Article  CAS  Google Scholar 

  53. Costa CM, Silva MM, Lanceros-Méndez S (2013) Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv 3(29):11404–11417

    Article  CAS  Google Scholar 

  54. Li J, Bi S, Li M, Xian Y, Shui Y, Yao Y, Wu M (2020) Rapid homogenization preparation of the mussel-inspired hydrophilic separator for high power lithium-ion batteries. J Appl Polym Sci 137:49052

    Article  CAS  Google Scholar 

  55. Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP (2015) Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J Power Sources 288:368–375

    Article  CAS  Google Scholar 

  56. Komaba S, Okushi K, Ozeki T, Yui H, Katayama Y, Miura T, Saito T, Groult H (2009) Polyacrylate modifier for graphite anode of lithium-ion batteries. Electrochem Solid-State Lett 12(5):A107–A110

    Article  CAS  Google Scholar 

  57. Lin C, Zhang H, Song YZ et al (2017) Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem A 6(3):991–998

    Article  Google Scholar 

  58. Wang X, Liu Z, Kong Q, Jiang W, Yao J, Zhang C, Cui G (2014) A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance. Solid State Ionics 262(1):747–753

    Article  CAS  Google Scholar 

  59. Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J (2015) The functional separator coated with core–shell structured silica–poly (methyl methacrylate) sub-microspheres for lithium-ion batteries. J Membr Sci 474:148–155

    Article  CAS  Google Scholar 

  60. Zhang P, Chen L, Shi C, Yang P, Zhao J (2015) Development and characterization of silica tube-coated separator for lithium ion batteries. J Power Sources 284:10–15

    Article  CAS  Google Scholar 

  61. Shi C, Zhang P, Chen L, Yang P, Zhao J (2014) Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J Power Sources 270:547–553

    Article  CAS  Google Scholar 

  62. Cai Z, Liu Y, Liu S, Li L, Zhang Y (2012) High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes. Energy Environ Sci 5(2):5690–5693

    Article  CAS  Google Scholar 

  63. Liang X, Yang Y, Jin X, Huang Z, Kang F (2015) The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J Membr Sci 493:1–7

    Article  CAS  Google Scholar 

  64. Shin W-K, Kim D-W (2013) High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. J Power Sources 226:54–60

    Article  CAS  Google Scholar 

  65. Ying W, Wang S, Fang J et al (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254

    Article  Google Scholar 

  66. Sun G, Dong G, Kong L, Yan X, Tian G, Qi S, Wu D (2018) Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 10(47):22439–22447

    Article  CAS  PubMed  Google Scholar 

  67. Dong G, Liu B, Sun G, Tian G, Qi S, Wu D (2019) TiO2 nanoshell@polyimide nanofiber membrane prepared via a surface-alkaline-etching and in-situ complexation-hydrolysis strategy for advanced and safe LIB separator. J Membr Sci 577:249–257

    Article  CAS  Google Scholar 

  68. Kong L, Wang Y, Yu H, Liu B, Qi S, Wu D, Zhong WH, Tian G, Wang J (2018) In situ armoring: a robust, high-wettability, and fire-resistant hybrid separator for advanced and safe batteries. ACS Appl Mater Interfaces 11(3):2978–2988

    Article  PubMed  Google Scholar 

  69. Dong G, Dong N, Liu B, Tian G, Qi S, Wu D (2020) Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator. J Membr Sci 601:117884

    Article  CAS  Google Scholar 

  70. Li Y, Wang X, Liang J, Wu K, Xu L, Wang J (2020) Design of a high performance zeolite/polyimide composite separator for lithium-ion batteries. Polymers 12(4):764

    Article  PubMed Central  Google Scholar 

  71. Wan Y, Jian Z, Liao X et al (2015) Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J Power Sources 299(60):417–424

    Google Scholar 

  72. Park S, Son CW, Lee S, Kim DY, Park C, Eom KS, Fuller TF, Joh HI, Jo SM (2016) Multicore-shell nanofiber architecture of polyimide/polyvinylidene fluoride blend for thermal and long-term stability of lithium ion battery separator. Sci Rep 6(1):36977–36977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sun G, Kong L, Liu B, Niu H, Zhang M, Tian G, Qi S, Wu D (2019) Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@ polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries. J Membr Sci 582:132–139

    Article  CAS  Google Scholar 

  74. Xu K, Qin Y, Xu T, Xie X, Deng J, Qi J, Huang C (2019) Combining polymeric membranes with inorganic woven fabric: towards the continuous and affordable fabrication of a multifunctional separator for lithium-ion battery. J Membr Sci 592:117364

    Article  CAS  Google Scholar 

  75. Liu Z, Wen J, Kong Q et al (2013) A core@sheath nanofibrous separator for lithium ion batteries obtained by coaxial electrospinning. Macromol Mater Eng 298(7):806–813

    Article  CAS  Google Scholar 

  76. Lee JH, Manuel J, Choi H, Park WH, Ahn JH (2015) Partially oxidized polyacrylonitrile nanofibrous membrane as athermally stable separator for lithium ion batteries. Polymer 68:335–343

    Article  CAS  Google Scholar 

  77. Lin D, Zhuo D, Liu Y, Cui Y (2016) All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J Am Chem Soc 138(34):11044–11050

    Article  CAS  PubMed  Google Scholar 

  78. Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15(4):649–662

    Article  CAS  Google Scholar 

  79. Li D, Shi D, Xia Y, Qiao L, Li X, Zhang H (2017) Superior thermally stable and nonflammable porous polybenzimidazole membrane with high wettability for high-power lithium-ion batteries. ACS Appl Mater Interfaces 9(10):8742–8750

    Article  CAS  PubMed  Google Scholar 

  80. Liang N, Fang J, Guo X (2017) A simple approach for preparation of porous polybenzimidazole membranes as a promising separator for lithium ion batteries. J Mater Chem A 5(29):15087–15095

    Article  CAS  Google Scholar 

  81. Saba H, Ihtesham R, Darr JA (2007) Synthesis and characterization of grafted nanohydroxyapatites using functionalized surface agents. Langmuir the Acs Journal of Surfaces & Colloids 23(12):6671–6676

    Article  Google Scholar 

  82. Jung HR, Ju DH, Lee WJ, Zhang X, Kotek R (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim Acta 54(13):3630–3637

    Article  CAS  Google Scholar 

  83. Yanilmaz M, Chen C, Zhang X (2013) Fabrication and characterization of SiO2/PVDF composite nanofiber-coated pp nonwoven separators for lithium-ion batteries. Journal of Polymer Science Part B Polymer Physics 51(23):1719–1726

    Article  CAS  Google Scholar 

  84. Cui WW, Tang DY, Gong ZL (2013) Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. J Power Sources 223:206–213

    Article  CAS  Google Scholar 

  85. Deka M, Kumar A (2011) Electrical and electrochemical studies of poly(vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196(3):1358–1364

    Article  CAS  Google Scholar 

  86. Gao K, Hu X, Yi T et al (2007) PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim Acta 52(2):443–449

    Article  Google Scholar 

  87. Shi J, Hu H, Xia Y, Liu Y, Liu Z (2014) Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. J Mater Chem A 2(24):9134–9141

    Article  CAS  Google Scholar 

  88. Zhang H, Zhang Y, Yao Z, John AE, Li Y, Li W, Zhu B (2016) Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries. Electrochim Acta 204:176–182

    Article  CAS  Google Scholar 

  89. Shi JL, Fang LF, Li H, Zhang H, Zhu BK, Zhu LP (2013) Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries. J Membr Sci 437(12):160–168

    Article  CAS  Google Scholar 

  90. Lee JR, Won JH, Kim JH, Kim KJ, Lee SY (2012) Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries. J Power Sources 216(11):42–47

    Article  CAS  Google Scholar 

  91. Byun S, Lee SH, Song D, Ryou MH, Lee YM, Park WH (2019) A crosslinked nonwoven separator based on an organosoluble polyimide for high-performance lithium-ion batteries. J Ind Eng Chem 72:390–399

    Article  CAS  Google Scholar 

  92. Gui X, Liu L, Gao S, Sun L, Xu K, Chen M (2019) A novel silsesquioxanes modified electrospun composite fibrous separator by in-situ crosslinking method for lithium-ion batteries. Mater Lett 242:66–70

    Article  CAS  Google Scholar 

  93. Liang X, Yang Y, Jin X, Cheng J (2016) Polyethylene oxide-coated electrospun polyimide fibrous seperator for high-performance lithium-ion battery. J Mater Sci Technol 32(3):200–206

    Article  CAS  Google Scholar 

  94. Kong L, Yuan L, Liu B, Tian G, Qi S, Wu D (2017) Crosslinked polyimide nanofiber membrane prepared via ammonia pretreatment and its application as a superior thermally stable separator for Li-ion batteries. J Electrochem Soc 164(6):A1328–A1332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibin Yu, Zan Chen or Enshan Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Shi, Y., Yuan, B. et al. Recent developments of polyimide materials for lithium-ion battery separators. Ionics 27, 907–923 (2021). https://doi.org/10.1007/s11581-020-03865-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03865-2

Keywords

Navigation